Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'functional-operator equation of Volterra type':
Найдено статей: 5
  1. Данная работа посвящена постановке и исследованию однозначной разрешимости краевых задач (типа задачи Дарбу, задачи Трикоми) для нагруженного интегро-дифференциального уравнения третьего порядка с гиперболическим и параболо-гиперболическим оператором. Существование и единственность решения краевой задачи доказана методом интегральных уравнений. Задачи эквивалентным образом сводятся к интегральным уравнениям Вольтерра со сдвигом. При достаточных условиях на заданные функции и коэффициенты доказывается однозначная разрешимость полученных интегральных уравнений.

    In this paper, the unique solvability of the boundary value problems (of a type similar to the Darboux problem and the Tricomi problem) of a loaded third order integro-differential equation with hyperbolic and parabolic-hyperbolic operators is proved by method of integral equations. The problem is similarly reduced to a Volterra integral equation with a shift. Under sufficient conditions for given functions and coefficients the unique solvability is proved for the solution of obtained integral equations.

  2. Рассматривается нелинейное функционально-операторное уравнение типа Гаммерштейна, представляющее собой удобную форму описания широкого класса управляемых распределенных систем. Для указанного уравнения доказываются теорема единственности решения, а также мажорантный признак тотально (по всему множеству допустимых управлений) глобальной разрешимости, использующий предположения о вольтерровости операторной составляющей и о дифференцируемости по переменной состояния функциональной составляющей правой части. Кроме того, используются предположения о глобальной разрешимости исходного уравнения для фиксированного допустимого управления $u=v$, а также о глобальной разрешимости некоторого мажорантного уравнения с правой частью, зависящей от максимального отклонения допустимых управлений от управления $v$. В качестве примера рассматривается первая краевая задача для параболического уравнения второго порядка с правой частью $f\bigl( t, x(t),u(t)\bigr)$, $t=\{ t_0,\overline{t}\}\in\Pi=(0,T)\times Q$, $Q\subset\mathbb{R}^n$, $x$ - фазовая переменная, $u$ - управляющая переменная. Здесь решение мажорантного уравнения можно представить как решение начально-краевой задачи аналогичного вида с правой частью $bx^{q/2}+a_0x+Z$, при нулевых начально-краевых условиях, $Z(t)=\max\limits_{u\in\mathcal{V}(t)} |f(t,x[v](t),u)-f(t,x[v](t),v(t))|$, $\mathcal{V}(t)\subset\mathbb{R}^s$ - множество допустимых значений управления при $t\in\Pi$, $q>2$, $s\in\mathbb{N}$; $a_0(.)$ и $b\geqslant0$ - параметры, определяемые по $f^\prime_x$.

    We consider a nonlinear functional operator equation of the Hammerstein type which is a convenient form of representation for a wide class of controlled distributed parameter systems. For the equation under study we prove a solution uniqueness theorem and a majorant sign for the totally (with respect to a whole set of admissible controls) global solvability subject to Volterra property of the operator component and differentiability with respect to a state variable of the functional component in the right hand side. Moreover, we use hypotheses on the global solvability of the original equation for a fixed admissible control $u=v$ and on the global solvability for some majorant equation with the right hand side depending on maximal deviation of admissible controls from the control $v$. For example we consider the first boundary value problem associated with a parabolic equation of the second order with right hand side $f\bigl( t, x(t),u(t)\bigr)$, $t=\{ t_0,\overline{t}\}\in\Pi=(0,T)\times Q$, $Q\subset\mathbb{R}^n$, where $x$ is a phase variable, $u$ is a control variable. Here, a solution to majorant equation can be represented as a solution to the zero initial-boundary value problem of the same type for analogous equation with the right hand side $bx^{q/2}+a_0x+Z$, where $Z(t)=\max\limits_{u\in\mathcal{V}(t)} |f(t,x[v](t),u)-f(t,x[v](t),v(t))|$, $\mathcal{V}(t)\subset\mathbb{R}^s$ is a set of admissible values for control at $t\in\Pi$, $q>2$, $s\in\mathbb{N}$; $a_0(.)$ and $b\geqslant0$ are parameters defined from $f^\prime_x$.

  3. Рассматривается нелинейное эволюционное операторное уравнение второго рода $\varphi=\mathcal{F}\bigl[f[u]\varphi\bigr]$, $\varphi\in W[0;T]\subset L_q\bigl([0;T];X\bigr)$, в произвольном банаховом пространстве $X$, с эволюционными (вольтерровыми) операторами $\mathcal{F}\colon L_p\bigl([0;\tau];Y\bigr)\to W[0;T]$, $f[u]\colon W[0;T]\to L_p\bigl([0;T];Y\bigr)$ общего вида, $Y$ - произвольное банахово пространство, $u\in\mathcal{D}$ - управляющий параметр. Для указанного уравнения доказываются теорема единственности решения, а также теорема о достаточных условиях тотально (по множеству допустимых управлений) глобальной разрешимости при варьировании управления. При некоторых естественных предположениях, связанных с поточечными по времени $t$ оценками, заключение об однозначной тотально глобальной разрешимости делается, исходя из факта глобальной разрешимости системы сравнения, в качестве которой выступает система функционально-интегральных неравенств (можно заменить ее системой уравнений аналогичного типа, а в некоторых случаях - системой обыкновенных дифференциальных уравнений) относительно функций одного переменного $t\in[0;T]$ со значениями в пространстве $\mathbb{R}$. В качестве примера устанавливаются условия однозначной тотально глобальной разрешимости управляемой нелинейной нестационарной системы уравнений Навье-Стокса.

    We consider the nonlinear evolutionary operator equation of the second kind as follows $\varphi=\mathcal{F}\bigl[f[u]\varphi\bigr]$, $\varphi\in W[0;T]\subset L_q\bigl([0;T];X\bigr)$, with Volterra type operators $\mathcal{F}\colon L_p\bigl([0;\tau];Y\bigr)\to W[0;T]$, $f[u]$: $W[0;T]\to L_p\bigl([0;T];Y\bigr)$ of the general form, a control $u\in\mathcal{D}$ and arbitrary Banach spaces $X$, $Y$. For this equation we prove theorems on solution uniqueness and sufficient conditions for totally (with respect to set $\mathcal{D}$) global solvability. Under natural hypotheses associated with pointwise in $t\in[0;T]$ estimates the conclusion on univalent totally global solvability is made provided global solvability for a comparison system which is some system of functional integral equations (it could be replaced by a system of equations of analogous type, and in some cases, of ordinary differential equations) with respect to unknown functions $[0;T]\to\mathbb{R}$. As an example we establish sufficient conditions of univalent totally global solvability for a controlled nonlinear nonstationary Navier-Stokes system.

  4. Пусть n,m, ℓ, s ∈ N – заданные числа, П ⊂ Rn – измеримое по Лебегу множество, X, Z – банаховы идеальные пространства измеримых на П функций. Рассматривается нелинейное операторное уравнение:

    x = θ + AF[x], x ∈ X, (1)

    где A : Zm → X – линейный ограниченный оператор, F : X → Zm – некоторый оператор. Уравнение (1) является естественной формой описания широкого класса сосредоточенных и распределенных систем. Ранее В.П. Политюковым был предложен метод монотонизации для обоснования разрешимости уравнения вида (1) и получения поточечных оценок решения. Суть его состояла в том, что разрешимость уравнения (1) доказывалась (помимо прочих условий) для случая, когда I) оператор F допускал поправку вида G = λI до монотонного оператора F[x] = F[θ+x]+G[x] такую, что II) (I +AG)−1A > 0 (λ > 0, I  тождественный оператор). Как видно из примеров, приведенных в данной статье, условия I) и II) могут противоречить друг другу, что сужает сферу применения метода. Основной результат статьи в том, что в случае оператора A, обладающего свойством вольтерровости, естественным для эволюционных уравнений, требование монотонизируемости I) можно заменить требованием оценки оператора F на некотором конусном отрезке сверху и снизу через линейный оператор G плюс фиксированный элемент. Доказывается, что для глобальной разрешимости начально-краевой задачи, связанной с полулинейным эволюционным уравнением, достаточно, чтобы аналогичная начально-краевая задача, связанная с линейным уравнением, полученным путем оценки правой части исходного полулинейного уравнения на некотором конусном отрезке, имела положительное решение. В качестве иллюстрации рассматривается применение указанных результатов к системе Гурса–Дарбу, задаче Коши для волнового уравнения и первой краевой задаче для уравнения диффузии.

    Let  n,m, ℓ, s ∈ N be given numbers, П ⊂ Rn be a set measurable by Lebesgue and  X, Z  be some Banach ideal spaces of functions measurable on . We consider a nonlinear operator equation of the form as follows:

    x = θ + AF[x], x ∈ X, (1)

    where A : Zm → X is bounded linear operator, F : F : X → Zm is some operator. Equation (1) is a natural form of lumped and distributed parameter systems from a wide enough class. Formerly, by V.P. Polityukov it was suggested monotonization method for justification of solvability of equation (1) and obtaining pointwise estimations for solutions. The matter of this method consisted in that solvability of equation (1) was proved (besides other conditions) under following: I) operator F allows some correction of the form G = λI to monotone operator F[x] = F[θ+x]+G[x] such that II) (I +AG)−1A > 0 (λ > 0, I is identity operator). As our examples show, conditions I) and II) may be contradictory to each other, that narrows a sphere of application of the method. The main result of the paper is that for the case of operator A, possessing the Volterra property, which is natural for evolutionary equations, the requirement I) of ability to be monotonized can be replaced by the requirement of some upper and lower estimates for operator F on some cone segment through linear operator G and additional fixed element. We prove that for global solvability of a boundary value problem associated with a semilinear evolutionary equation it is sufficient that analogous boundary value problem associated with linear equation, derived from the original equation by estimating of a right-hand side on some cone segment, have a positive solution. The application of results obtained is illustrated by Goursat–Darboux system, Cauchy problem associated with wave equation and first boundary value problem associated with diffusion equation.

  5. Рассматривается регуляризация классических условий оптимальности (КУО) — принципа Лагранжа и принципа максимума Понтрягина — в выпуклой задаче оптимального управлении с функциональными ограничениями типа равенства и неравенства. Управляемая система задается линейным функционально-операторным уравнением второго рода общего вида в пространстве $L^m_2$, основной оператор правой части уравнения предполагается квазинильпотентным. Целевой функционал задачи является сильно выпуклым. Получение регуляризованных КУО в итерационной форме основано на использовании метода итеративной двойственной регуляризации. Основное предназначение получаемых в работе регуляризованных принципа Лагранжа и принципа максимума Понтрягина в итерационной форме — устойчивое генерирование минимизирующих приближенных решений в смысле Дж. Варги. Регуляризованные КУО в итерационной форме формулируются как теоремы существования в исходной задаче минимизирующих приближенных решений. Они «преодолевают» свойства некорректности КУО и являются регуляризирующими алгоритмами для решения оптимизационных задач. В качестве иллюстративного примера рассматривается задача оптимального управления, связанная с гиперболической системой дифференциальных уравнений первого порядка.

    We consider the regularization of the classical optimality conditions (COCs) — the Lagrange principle and the Pontryagin maximum principle — in a convex optimal control problem with functional constraints of equality and inequality type. The system to be controlled is given by a general linear functional-operator equation of the second kind in the space $L^m_2$, the main operator of the right-hand side of the equation is assumed to be quasinilpotent. The objective functional of the problem is strongly convex. Obtaining regularized COCs in iterative form is based on the use of the iterative dual regularization method. The main purpose of the regularized Lagrange principle and the Pontryagin maximum principle obtained in the work in iterative form is stable generation of minimizing approximate solutions in the sense of J. Warga. Regularized COCs in iterative form are formulated as existence theorems in the original problem of minimizing approximate solutions. They “overcome” the ill-posedness properties of the COCs and are regularizing algorithms for solving optimization problems. As an illustrative example, we consider an optimal control problem associated with a hyperbolic system of first-order differential equations.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref