Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'geometric difference of sets':
Найдено статей: 6
  1. Рассматривается линейная задача преследования группой преследователей двух убегающих при равных динамических возможностях всех участников и с фазовыми ограничениями на состояния убегающих в предположении, что убегающие используют одно и то же управление. Движение каждого участника имеет вид $\dot z+a(t)z=w.$ Геометрические ограничения на управления - строго выпуклый компакт с гладкой границей, терминальные множества - начало координат. Предполагается, что убегающие в процессе игры не покидают пределы выпуклого конуса. Целью преследователей является поимка двух убегающих, цель группы убегающих противоположна. Говорят, что в задаче преследования происходит поимка, если существуют два преследователя, из заданной группы преследователей, которые ловят убегающих, при этом моменты поимки могут не совпадать. В терминах начальных позиций получены достаточные условия поимки двух убегающих. Приведены примеры, иллюстрирующие полученные результаты.

    We consider a linear problem of pursuing two evaders by a group of persecutors in case of equal dynamic opportunities of all participants and under phase restrictions imposed on the states of evaders. We assume that the evaders use the same control. The movement of each participant has the form $ \dot z + a (t) z = w. $ Geometric constraints on the control are strictly convex compact set with smooth boundary, and terminal sets are the origin of coordinates. It is assumed that the evaders do not leave the convex cone. The aim of a group of pursuers is to capture two evaders; the aim of a group of evaders is opposite. We say that a capture holds in the problem of pursuing two evaders if among the specified number of pursuers there are two of them who catch the evaders, possibly at different times. We obtain sufficient conditions for capturing two evaders in terms of initial positions. The results obtained are illustrated by examples.

  2. Изучается задача, относящаяся к оценке хаусдорфова отклонения выпуклых многоугольников в $\mathbb{R}^2$ от их геометрической разности с кругами достаточно малого радиуса. Задачи с такой тематикой, в которых рассматриваются не только выпуклые многоугольники, но и выпуклые компакты в евклидовом пространстве $\mathbb{R}^n$, возникают в различных областях математики и, в частности, в теории дифференциальных игр, теории управления, выпуклом анализе. Оценки хаусдорфовых отклонений выпуклых компактов в $\mathbb{R}^n$ от их геометрической разности с замкнутыми шарами в $\mathbb{R}^n$ присутствуют в работах Л.С. Понтрягина, его сотрудников и коллег. Эти оценки весьма существенны при выводе оценки рассогласования альтернированного интеграла Л. С. Понтрягина в линейных дифференциальных играх преследования и альтернированных сумм. Аналогичные оценки оказываются полезными при выводе оценки рассогласования множеств достижимости нелинейных управляемых систем в $\mathbb{R}^n$ и аппроксимирующих их множеств. В работе рассмотрен конкретный выпуклый семиугольник в $\mathbb{R}^2$. Для изучения геометрии этого семиугольника вводится понятие клина в $\mathbb{R}^2$. На базе этого понятия получена верхняя оценка величины хаусдорфова отклонения семиугольника от его геометрической разности с кругом в $\mathbb{R}^2$ достаточно малого радиуса.

    We study a problem concerning the estimation of the Hausdorff deviation of convex polygons in $\mathbb R^2$ from their geometric difference with circles of sufficiently small radius. Problems with such a subject, in which not only convex polygons but also convex compacts in the Euclidean space $\mathbb R^n$ are considered, arise in various fields of mathematics and, in particular, in the theory of differential games, control theory, convex analysis. Estimates of Hausdorff deviations of convex compact sets in $\mathbb R^n$ in their geometric difference with closed balls in $\mathbb R^n$ are presented in the works of L.S. Pontryagin, his staff and colleagues. These estimates are very important in deriving an estimate for the mismatch of the alternating Pontryagin’s integral in linear differential games of pursuit and alternating sums. Similar estimates turn out to be useful in deriving an estimate for the mismatch of the attainability sets of nonlinear control systems in $\mathbb R^n$ and the sets approximating them. The paper considers a specific convex heptagon in $\mathbb R^2$. To study the geometry of this heptagon, we introduce the concept of a wedge in $\mathbb R^2$. On the basis of this notion, we obtain an upper bound for the Hausdorff deviation of a heptagon from its geometric difference with the disc in $\mathbb R^2$ of sufficiently small radius.

  3. Рассматривается линейная дифференциальная игра с заданным моментом окончания $p$. Множества достижимости игроков являются $n$-мерными шарами. Терминальное множество в игре определяется условием принадлежности нормы фазового вектора отрезку с положительными концами. Множество, определяемое данным условием, названо в работе кольцом. Тот факт, что терминальное множество не является выпуклым, потребовал привлечения дополнительной теории, позволяющей находить сумму и разность Минковского для кольца и шара в $n$-мерном пространстве. На выбор управления первого игрока накладывается импульсное ограничение. Возможности первого игрока определяются запасом ресурсов, который он может использовать при формировании своего управления. В отдельные моменты времени возможно отделение части запаса ресурсов, что может привести к «мгновенному» изменению фазового вектора, тем самым усложняя задачу. Управление второго игрока стеснено геометрическими ограничениями. Цель первого игрока заключается в том, чтобы в заданный момент времени привести фазовый вектор на терминальное множество. Цель второго игрока противоположна. Построен максимальный стабильный мост, ведущий в заданный момент времени на терминальное множество. Стабильный мост определяется функциями внешнего и внутреннего радиусов, которые вычислены в явном виде.

    We consider a linear differential game with the fixed end time $p$. Attainability domains of players are $n$-dimensional balls. The terminal set of a game is determined by a condition for assigning the norm of a phase vector to a segment with positive ends. A set defined by this condition is named in the article as ring. The fact that the terminal set is not convex required an additional theory allowing us to calculate Minkowski sum and difference for a ring and a ball in $n$-dimensional space. Control of the first player has a pulse constraint. Abilities of the first player are determined by the stock of resources that can be used by the player at formation of his control. At certain moments of time the separation of a part of the resources stock is possible, which may implicate an “instantaneous” change of a phase vector, thereby complicating the problem. Control of the second player has geometrical constraints. The aim of the first player is to lead a phase vector to the terminal set at fixed time. The aim of the second player is opposite. The maximal stable bridge leading at fixed time to the terminal set has been constructed. A stable bridge is determined by the functions of internal and external radii, which are calculated explicitly.

  4. Рассматривается линейная дифференциальная игра с импульсным управлением первого игрока. Возможности первого игрока определяются запасом ресурсов, который он может использовать при формировании своего управления. В отдельные моменты времени возможно отделение части запаса ресурсов, что может привести к «мгновенному» изменению фазового вектора, тем самым задача усложняется. Управление второго игрока стеснено геометрическими ограничениями. Вектограммы игроков описываются одним и тем же шаром с разными радиусами, зависящими от времени. Терминальное множество в игре определяется условием принадлежности нормы фазового вектора отрезку с положительными концами. Множество, определяемое данным условием, названо в работе кольцом. Цель первого игрока заключается в том, чтобы в заданный момент времени привести фазовый вектор на терминальное множество. Цель второго игрока противоположна. С помощью максимального стабильного моста, определенного авторами ранее, построены оптимальные управления игроков.

    We consider a linear differential game with a pulse control of the first player. The abilities of the first player are determined by the stock of resources that the player can use when forming his control. At certain instants of time a separation of part of the resources stock is possible, which may implicate an “instantaneous” change of a phase vector, resulting in the complication of the problem. The control of the second player has geometrical constraints. The vectograms of the players are described by the same ball with different time-dependent radii. The terminal set of the game is determined by the condition of belonging the norm of a phase vector to a segment with positive ends. In this paper, a set defined by this condition is called a ring. The aim of the first player is to lead a phase vector to the terminal set at fixed time. The aim of the second player is opposite. With the maximal stable bridge, which has been defined by the authors previously, optimal controls of players are constructed.

  5. Обсуждается проблема корректного использования программных пакетов, в которых реализованы методы решения некорректных задач. К некорректным задачам относится большинство задач обработки экспериментальных данных. При использовании методов решения некорректных задач существует проблема неединственности решения, которая решается путем введения априорной информации. Получение априорной информации возможно разными способами, но количественные оценки предполагают использование дополнительных методов анализа данных. Очевидно, что дополнительные методы не должны быть сложнее и трудозатратнее основного метода обработки данных. На примере использования программы анализа данных электроразведки RES3DINV продемонстрирована роль априорной информации для получения достоверных результатов. Программный пакет RES3DINV применяется для построения модели грунта по измеренным значениям удельного сопротивления методами электроразведки. При использовании реализованного в программном пакете метода инверсии необходимо задавать входные параметры, характеризующие геометрические размеры объекта аномального сопротивления, которые априори, как правило, неизвестны. На модельных объектах продемонстрировано как влияет некорректное задание входных параметров на результат интерпретации данных. Показано, что в качестве способа получения априорной информации можно использовать метод векторного анализа. Этот метод позволяет получать оценки геометрических параметров аномального объекта и не требует больших временных и ресурсных затрат, и может быть использован непосредственно на месте полевых экспериментальных измерений.

    We discuss the problem of proper use of software packages that implement methods for solving ill-posed problems. Most of the problems of processing experimental data belong to ill-posed problems. When using methods for solving ill-posed problems, there is a problem of non-uniqueness of the solution, which is solved by introducing a priori information. Obtaining a priori information is possible in different ways, but quantitative estimates involve the use of additional methods for data analysis. Obviously, additional methods should not be more complicated and labor intensive than the main data processing method. Using the RES3DINV electrical prospecting data analysis software as an example, the role of a priori information for obtaining reliable results is demonstrated. The RES3DINV software is used to build a soil model from the measured values of resistivity using electrical survey’s methods. When using the inversion method implemented in the software package, it is necessary to set the input parameters describing the geometric dimensions of the anomalous resistance object, which are usually unknown a priori. By model objects we demonstrate how the incorrect setting of input parameters affects the result of data interpretation. We show that the vector analysis method can be used as a way to obtain a priori information. This method allows us to obtain estimates of the geometric parameters of an anomalous object, does not involve high time and resource expenses, and can be used directly at the site of field experimental measurements.

  6. Работа посвящена экспериментальному исследованию влияния трения качения на динамику робота-колеса. Робот приводится в движение за счет изменения собственного гиростатического момента с помощью управляемого вращения установленного на нем ротора. Задача рассматривается в предположении, что центр масс системы не совпадает с ее геометрическим центром. В работе получены уравнения, описывающие динамику рассматриваемой системы, и приведен пример управляемого движения колеса при задании постоянного углового ускорения ротора. Приведено описание конструкции робота-колеса и предложена методика экспериментального определения коэффициента трения качения. Для проверки предложенной математической модели проведены экспериментальные исследования управляемого движения робота-колеса. В работе показано, что теоретические и экспериментальные результаты качественно совпадают, но имеют количественное отличие.

    This paper presents an experimental investigation of the influence of rolling friction on the dynamics of a robot wheel. The robot is set in motion by changing the proper gyrostatic momentum using the controlled rotation of a rotor installed in the robot. The problem is considered under the assumption that the center of mass of the system does not coincide with its geometric center. In this paper we derive equations describing the dynamics of the system and give an example of the controlled motion of a wheel by specifying a constant angular acceleration of the rotor. A description of the design of the robot wheel is given and a method for experimentally determining the rolling friction coefficient is proposed. For the verification of the proposed mathematical model, experimental studies of the controlled motion of the robot wheel are carried out. We show that the theoretical results qualitatively agree with the experimental ones, but are quantitatively different.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref