Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Проведен численный анализ сопряженной естественной конвекции в пористой среде, насыщенной газом, окруженной твердыми стенками конечной толщины при наличии локального источника тепла. Краевая задач сформулирована в безразмерных переменных "функция тока - вектор завихренности - температура" и решена методом конечных разностей. Установлены масштабы влияние источника тепла, проницаемости внутреннего объема, фактора нестационарности и теплофизических характеристик ограждающих стенок на режимы течения и теплопереноса.
сопряженный теплоперенос, естественная конвекция, пористая среда, приближение Буссинеска, источник теплаConjugate natural convection in a porous medium saturated with a gas surrounded by the finite thickness solid walls at presence of a local heat source has been numerically analyzed. Boundary problem has been formulated in dimensionless variables such as "stream function - vorticity vector - temperature" and it has been solved by finite difference method. The effect levels of the heat source, the medium permeability, the transient factor and the heat conductivity of the solid walls on flow patterns and heat transfer modes have been determined.
-
Об альтернативе уравнениям в частных производных при моделировании систем типа реакция – диффузия, с. 35-47Рассмотрен альтернативный способ описания реакционно-диффузионных систем химической кинетики на основе обыкновенных дифференциальных уравнений. В рамках данного подхода учёт диффузии вещества и переноса тепла в модели осуществляется без перехода к частным производным, а только за счёт увеличения количества переменных и аддитивных поправок в исходные уравнения. При этом в качестве базовой модели химической кинетики для данной работы была выбрана модель, лишённая недостатков классических моделей химической кинетики, таких как несогласованность уравнений по размерности или масштабу.
On alternative to partial differential equations for the modelling of reaction-diffusion systems, pp. 35-47An alternative way for describing reaction-diffusion systems of chemical kinetics on the basis of ordinary differential equations is considered in this paper. Under this approach, diffusion of matter and heat transfer in the model are taken into account without going to the partial derivatives, but only by increasing the number of variables and the addition of corrective coefficients in the original equations. As a base model of chemical kinetics was chosen the one, in which there was no such drawbacks of classical models, as the inconsistency of the equations on the dimension or scale.
-
Математическое моделирование композиционных материалов играет важную роль в современной технике, а решение и исследование обратных граничных задач теплообмена невозможно без использования систем собственных функций задачи Штурма-Лиувилля для дифференциального уравнения с разрывными коэффициентами. Одним из важнейших свойств таких систем является их полнота в соответствующих пространствах. Это свойство систем позволяет доказать теоремы существования и единственности как для прямых задач, так и обратных граничных задач теплопроводности, а также обосновать численные методы решения таких задач. В настоящей статье доказана полнота в пространстве $L_2[r_0,r_2]$ задачи Штурма-Лиувилля для дифференциального оператора второго порядка с разрывным коэффициентом. Эта задача возникает при исследовании и решении обратной граничной задачи теплопроводности для полого шара, состоящего из двух шаров с различными коэффициентами температуропроводности. Доказана самосопряженность, инъективность, а также положительная определенность этого оператора.
система собственных функций, задача Штурма—Лиувилля, композиционные материалы, обратные граничные задачи
Completeness of the system of eigenfunctions of the Sturm-Liouville problem with the singularity, pp. 59-63Mathematical modeling of composite materials plays an important role in modern technology, and the solution and study of inverse boundary value problems of heat transfer is impossible without the use of systems of eigenfunctions of the Sturm-Liouville problem for the differential equation with discontinuous coefficients. One of the most important properties of such systems is their completeness in the corresponding spaces. This property of systems allows to prove theorems of existence and uniqueness of both direct problems and inverse boundary value problems of thermal conductivity, and also to prove numerical methods of solving such problems. In this paper, we prove the completeness of the Sturm-Liouville problem in the space $L_2[r_0,r_2]$ for a second-order differential operator with a discontinuous coefficient. This problem arises when investigating and solving the inverse boundary problem of thermal conductivity for a hollow ball consisting of two balls with different temperature conductivity coefficients. Self-conjugacy, injectivity, and positive definiteness of this operator are proved.
-
Применение теоретико-вероятностного подхода при моделировании систем химической кинетики, с. 492-500В работе рассматривается модель химической кинетики, для которой вывод уравнений не опирается на закон действующих масс, а строится на основе таких принципов, как геометрическая вероятность, а также совместная вероятность для двух событий. Для этой модели строится обобщение на случай реакции-диффузии в гетерогенной среде, а также учитывается конвекционный и диффузионный перенос тепловой энергии. Построение данного обобщения проводится по альтернативной методике на основе систем обыкновенных дифференциальных уравнений и без перехода к частным производным. По своему описанию этот подход близок к методу конечных объемов, но в отличие от него для описания диффузии применяются статистические упрощения и принцип геометрической вероятности. Подобный альтернативный вариант позволяет значительно упростить численную реализацию итоговой модели, а также упростить ее качественный анализ методами теории динамических систем. Помимо этого, также значительно повышается эффективность параллельной реализации численного метода для итоговой модели. Дополнительно к этому мы также рассмотрим приложение модели для описания эталонного примера кинетики с квазипериодическим режимом, а также рассмотрим алгоритм перевода стандартных моделей с размерными кинетическими константами к ее формализму.
The paper considers a model of chemical kinetics for which the derivation of equations does not rely on the law of mass action, but is rather based on such principles as geometric probability and joint probability. For this model a generalization is constructed for the case of reaction-diffusion systems in heterogeneous medium, with respect to the convective and diffusive transfer of heat. The construction of this generalization is carried out by an alternative methodology, which is based fully on systems of ordinary differential equations, without a transition to partial derivatives. The description of this new method is a bit similar to the finite volume method, except that it uses statistical simplifying positions and geometric probability to describe diffusion processes. Such approach allows us to greatly simplify the numerical implementation of the resulting model, as well as to simplify its quantitative analysis by dynamical systems theory methods. Moreover, the efficiency of parallel implementation of the numerical method is increased for the resulting model. In addition, the author considers an application of this model for the description of some example reaction with quasi-periodic regime, as well as an algorithm for the transition from standard models with dimensional kinetic constants to its formalism.
-
Статья посвящена решению обратной граничной задачи для стержня, состоящего из композиционных материалов. В обратной задаче требуется, используя информацию о температуре теплового потока в разделе сред, определить температуру на одном из концов стержня. В работе представлен метод проекционной регуляризации, который позволил приближенно оценить погрешность полученного решения обратной задачи. Для проверки вычислительной эффективности этого метода были проведены тестовые расчеты.
Numerical solution of the inverse boundary value heat transfer problem for an inhomogeneous rod, pp. 253-264The article is devoted to solving an inverse boundary value problem for a rod consisting of composite materials. In the inverse problem, it is required, using information about the temperature of the heat flow in the media section, to determine the temperature at one of the ends of the rod. The paper presents a method of projection regularization, which made it possible to approximately estimate the error of the obtained solution to the inverse problem. To check the computational efficiency of this method, test calculations were carried out.
-
Проведено математическое моделирование конвективно-кондуктивно-радиационного теплообмена в кубической полости, заполненной прозрачной для излучения средой. Анализируемый объект представлял собой замкнутый объем с теплопроводными стенками конечной толщины, имеющими диффузно-серые внутренние поверхности. Внешние поверхности двух вертикальных стенок являлись изотермическими, а остальные внешние грани области решения - адиабатическими. Краевая задача сформулирована в безразмерных переменных «векторный потенциал-вектор завихренности-температура» в приближении Буссинеска и с учетом диатермичности сплошной среды. Анализ радиационного теплообмена проведен с использованием метода сальдо в варианте Поляка. Сформулированная нестационарная краевая задача реализована численно методом конечных разностей в широком диапазоне изменения числа Рэлея, коэффициента теплопроводности материала ограждающих твердых стенок и коэффициента излучения. Получены корреляционные соотношения для средних конвективного и радиационного чисел Нуссельта на характерной внутренней границе раздела сред. Проведено сравнение полученных результатов с данными двумерной модели. Установлено, что при рассмотрении трехмерной задачи можно оценить формирование интенсивных поперечных перетоков среды со стороны двух вертикальных поверхностей, которые отсутствуют в двумерной постановке. Показано, что решение задач конвективно-радиационного теплопереноса в сопряженной постановке приводит к существенным изменениям в распределениях локальных и интегральных характеристик по сравнению с несопряженной моделью, что в первую очередь связано с более корректным описанием механизма теплового излучения в диатермичных средах за счет учета теплопроводности ограждающих твердых стенок.
сопряженная естественная конвекция, поверхностное излучение, приближение Буссинеска, замкнутая кубическая полость, твердые стенки конечной толщины, математическое моделированиеMathematical simulation of convective-conductive-radiative heat transfer in a cubical cavity filled with diathermanous medium has been carried out. The domain of interest is a closed volume having heat-conducting solid walls of finite thickness with diffuse grey inner surfaces. The outer surfaces of two vertical walls are isothermal while the other walls are adiabatic. The boundary-value problem has been formulated in dimensionless variables such as “vector potential-vorticity vector-temperature’’ in the Boussinesq approximation and taking into account the diathermancy of the continuous medium. An analysis of surface thermal radiation has been conducted on the basis of the net-radiation method in the form of Poljak. The formulated transient boundary-value problem has been solved by finite difference method in a wide range of the Rayleigh number, thermal conductivity ratio and surface emissivity. Correlations for the average convective and radiative Nusselt numbers at the characteristic internal solid-fluid interface have been obtained. The comparison between the obtained three-dimensional results and the two-dimensional data has been conducted. It has been found, that on the basis of a three-dimensional model it is possible to analyze the formation of intensive transverse flows from two vertical surfaces which are absent in a two-dimensional model. It has been also shown, that the solution of convective-radiative heat transfer problems in the conjugate statement leads to essential changes in distributions of local and integral parameters in comparison with the non-conjugate model, which first of all is related to a more correct description of the thermal radiation in diathermanous media due to taking into account the thermal conduction of the solid walls.
-
В статье выполнен теоретический анализ основополагающих уравнений, выражающих фундаментальные законы сохранения в континуальном и дисконтинуальных приближениях, и методов решения задач гидродинамики как одного из важнейших подразделов механики сплошных сред. Данная работа является попыткой более точно описать физико-химические макропроцессы. Показано, что для компьютерного моделирования больше всего подходят уравнения, которые выражают законы сохранения при естественных ограничениях на минимальные пространственный и временной масштабы, то есть уравнения без частных производных и ограничений на гладкость решений. На примере уравнений неразрывности и теплопроводности, приведен феноменологический способ построения и численного решения основополагающих уравнений, и сравнение с традиционным подходом.
сплошная среда, число Кнудсена, феноменологический подход, математическое моделирование, тепломассообменThe article presents a theoretical analysis of the governing equations expressing the fundamental conservation laws in the continuum and discontinuum approximations, and methods for solving problems of hydrodynamics as one of the most important subfields of continuum mechanics. This article is an attempt to more accurately describe physicochemical macro-processes. It is shown that the most suitable equations for computer modeling are the conservation laws under natural constraints on the minimum spatial and time scales, i.e., equations without partial derivatives and constraints on the solution smoothness. Using the continuity and thermal conductivity equations, a phenomenological method for constructing and numerically solving the governing equations is presented, and comparison with the traditional approach is given.
-
В работе приводится моделирование процессов тепло- и массообмена газового (воздушного) пузырька, находящегося в жидкости (воде), охлаждающей нагретую поверхность металла.
The paper presents simulation of heat and mass transfer gas (air) bubble in a liquid (water) cooling the heated metal surface.
-
Проведено математическое моделирование сложного теплообмена в замкнутой области, заполненной диатермичной средой. Область решения представляет собой замкнутую полость с теплопроводными стенками конечной толщины, имеющими диффузно-серые внутренние поверхности. Краевая задача сформулирована в безразмерных переменных «функция тока–завихренность–температура» и решена методом конечных разностей. Установлены масштабы влияния числа Рэлея, степени черноты внутренних поверхностей и коэффициента теплопроводности материала ограждающих твердых стенок на режимы течения и теплопереноса.
Numerical analysis of conjugate convective-radiative heat transfer in an enclosure filled with diathermanous medium, pp. 114-125Complex heat transfer in an enclosure filled with diathermanous medium has been numerically analyzed. The domain of interest is a gas cavity bounded with the heat-conducting solid walls of finite thickness having diffuse grey inner surfaces. The boundary problem has been formulated in dimensionless variables such as «stream function–vorticity–temperature» and it has been solved by finite difference method. The effect levels of the Rayleigh number, the surface emissivity and the thermal conductivity ratio on flow patterns and heat transfer modes have been determined.
-
В статье рассматривается модельная задача несжимаемого течения жидкости и переноса тепла в коротком плоском канале с обратным уступом. Цель работы состоит в исследовании влияния граничного условия для потока тепла (температуры) на выходе из канала на характеристики теплопереноса внутри канала. Система уравнений Навье-Стокса и баланса тепла решаются численно с использованием равномерной сетки разрешением $6001\times301$ узлов. Для разностной аппроксимации пространственных производных используется метод контрольного объема второго порядка. Достоверность получаемых решений подтверждена для широкого диапазона числа Рейнольдса $(100 \leqslant \text{Re} \leqslant 1000)$ и числа Прандтля $\text{Pr} = 0.71$ путем сравнения с экспериментальными и теоретическими результатами, найденными в литературе. Анализируются картины течения, поля изотерм перегрева потока и поведение локального числа Нуссельта вдоль нагретой нижней стенки канала в зависимости от выбора выходного граничного условия для потока тепла (температуры). Показано, что этот выбор может оказать существенное влияние на характер прогрева течения внутри всего канала. По результатам исследования выбор сделан в пользу нелинейного граничного условия.
Numerical solution of the heat transfer problem in a short channel with backward-facing step, pp. 431-449A test problem of the laminar steady incompressible flow and heat transfer over backward-facing step in a 2D short channel is presented. The focus of the study is on the changes in heat transfer characteristics of the flow field inside the channel due to different boundary conditions for heat flux at the outflow border of the domain. The Navier-Stokes equations in a velocity-pressure formulation and energy equation are numerically solved using a uniform grid of $6001\times301$ points. The control-volume technique for the second-order difference approximation for spatial derivatives is used. The solutions were validated for a wide range of Reynolds numbers $(100 \leqslant \text{Re} \leqslant 1000)$ and Prandtl number $\text{Pr} = 0.71$, comparing them to experimental and numerical results found in the literature. The isotherm patterns and behaviors of Nusselt number along the heated bottom wall of the channel are examined. The study results showed that a condition for the heat flow (temperature) at the outlet border can influence the heat transfer in the whole domain. The nonlinear boundary condition for temperature at the outflow border is claimed as the best.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.