Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
В работе рассматриваются результаты решения задачи стационарного течения вязкой несжимаемой жидкости в плоском канале с обратным уступом и прогреваемой нижней стенкой в широком диапазоне числа Рейнольдса $100\leqslant \text{Re}\leqslant 1000$ и параметра расширения потока $1.11 \leqslant ER \leqslant 10$. Исследование выполнено путем численного интегрирования системы двумерных уравнений Навье-Стокса в переменных «скорость-давление» на равномерных сетках с шагом 1/300. Достоверность полученных результатов подтверждается их сравнением с литературными данными. Приводятся подробные картины течения и перегрева жидкости в зависимости от двух основных параметров задачи: $\text{Re}$ и $ER$. Показывается, что с одновременным ростом параметров $\text{Re}$ и $ER$ существенно усложняется структура течения - увеличиваются количество вихрей и их размеры вплоть до образования вихря за уступом с двумя центрами вращения. Также показывается, что характерная высота зоны прогрева течения слабо зависит от $\text{Re}$ и $ER$ и в конечном счете ближе к выходу из канала составляет приблизительно половину его высоты. Для всех центров вихрей определяются их основные характеристики: координаты, экстремумы функции тока, завихренности. Анализируется сложное немонотонное поведение профилей коэффициентов трения, сопротивления и теплоотдачи (числа Нуссельта) по длине канала. Показывается, что эти коэффициенты в одинаковой степени сильно зависят как от числа Рейнольдса, так и от параметра расширения канала, достигая своих максимальных значений при максимальных значениях $\text{Re}$ и $ER$.
The paper deals with the results of solving the problem of steady-state flow of a viscous incompressible fluid in a plane channel with a backward-facing step and a heated bottom wall for the Reynolds number in the range $100\leqslant \text{Re}\leqslant1000$ and the expansion ratio of a plane channel in the range $1.11 \leqslant ER \leqslant 10$. The study was carried out by numerical integration of the 2-D Navier-Stokes equations in velocity-pressure formulation on uniform grids with a step which equals to 1/300. Correction of the results is confirmed by comparing them with the literature data. Detailed flow patterns and fields of stream overheating depending on two basic parameters of the problem $\text{Re}$ and $ER$ are demonstrated. It is shown that with the increase of parameters $\text{Re}$ and $ER$ the structure of flow becomes much more complicated, that is, there is an increase of the number of vortices and their sizes up to the formation of a vortex behind the backward-facing step with two centers of rotation. It is also stated that the typical height of the heating zone of the flow depends weakly on $\text{Re}$ and $ER$ and eventually, near the exit of the channel, equals approximately half of the channel height. For all centers of vortices their main characteristics are defined: location, extremums of stream function, vorticity. Complex nonmonotonic behaviors of the coefficients of friction, hydrodynamic resistance and heat transfer (Nusselt number) along the channel are analyzed. It is shown that these coefficients strongly depend both on Reynolds number and on expansion ratio, reaching the maximum values at the maximum values of $\text{Re}$ and $ER$.
-
При движении тяжелой частицы в вязкой среде сила сопротивления, вообще говоря, зависит от числа Рейнольдса, следовательно, от модуля вектора скорости частицы относительно среды. Это приводит к нелинейному взаимодействию разных составляющих движения. Если оседающая в поле силы тяжести частица имеет и горизонтальную составляющую скорости, то эти две компоненты движения, влияя на число Рейнольдса, вносят вклад в коэффициент гидродинамического сопротивления и тем самым воздействуют друг на друга. Это может иметь значение, например, в приводном слое атмосферы при сильных ветрах, когда, вследствие упомянутого взаимодействия, время пребывания брызг в воздухе зависит, вообще говоря, и от их горизонтального движения. Для конкретного закона сопротивления исследована нелинейная модель взаимодействия двух составляющих движения. Расчеты показывают, что, хотя порядок величины скорости оседания частицы при учете этого взаимодействия не меняется, поправки к скорости могут быть заметными.
оседание тяжелой частицы, вязкая среда, сопротивление, взаимодействие с горизонтальным движением, нелинейная аналитическая модель
Interaction of two components of the movement under settling of the heavy particle in a viscous medium, pp. 292-296When a heavy particle moves in a viscous medium, the resistance force depends on the Reynolds number, therefore, on the modulus of the particle velocity vector in relation to medium. This leads to nonlinear interaction of different components of movement. If a particle settling in gravity field has also a horizontal velocity component, these two components of the movement, affecting the Reynolds number, contribute into the coefficient of hydrodynamic resistance and, thereby, affect each other. This can be important, for example, in the surface layer of the atmosphere over water under strong winds, when, due to the mentioned interaction, the stay time of spray in the air depends on a horizontal movement. For the specific resistance law, a nonlinear model of interaction between the two components of movement is studied. Calculations show that although the order of magnitude of the particle settling velocity accounting this interaction does not change, the velocity corrections can be noticeable.
-
Данная работа посвящена экспериментальному определению присоединенных масс тел, погруженных в жидкость полностью или частично. В работе приводятся схема экспериментальной установки, методика проведения эксперимента и математическая модель, положенная в основу методики. Метод определения присоединенной массы основан на буксировке тела при известной тяговой силе. Из теории известно, что понятие присоединенной массы возникает в предположении потенциальности обтекания тела жидкостью. В связи с этим мы дополнительно проводим PIV-визуализацию потоков, генерируемых буксируемым телом, и определяется участок траектории, на котором обтекание можно считать потенциальным. Для верификации методики проведен ряд экспериментов по определению присоединенных масс эллипсоида вращения. Результаты измерений согласуются с известными справочными данными. На основе разработанной методики определены присоединенные массы безвинтового надводного робота.
присоединенные массы, движение по свободной поверхности, гидродинамическое сопротивление, метод буксировкиThis paper is concerned with the experimental determination of the added masses of bodies completely or partially immersed in a fluid. The paper presents an experimental setup, a technique of the experiment and an underlying mathematical model. The method of determining the added masses is based on the towing of the body with a given propelling force. It is known (from theory) that the concept of an added mass arises under the assumption concerning the potentiality of flow over the body. In this context, the authors have performed PIV visualization of flows generated by the towed body, and defined a part of the trajectory for which the flow can be considered as potential. For verification of the technique, a number of experiments have been performed to determine the added masses of a spheroid. The measurement results are in agreement with the known reference data. The added masses of a screwless freeboard robot have been defined using the developed technique.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.