Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'incomplete information':
Найдено статей: 3
  1. Различные задачи управления пучками траекторий составляют важный объект изучения в современной математической теории управления. Такие задачи возникают, например, при изучении движения потока заряженных частиц, а также при наличии неполной информации о начальном состоянии управляемой системы. В настоящей статье для нелинейного управляемого объекта весьма общего вида на фиксированном отрезке времени $[0,T]$ рассматривается задача управления пучками траекторий при неодноточечном начальном множестве. На множестве достижимости в момент $T>0$ изучается задача максимизации заданной непрерывной функции. Эту задачу можно интерпретировать как задачу о разбросе траекторий управляемого объекта. Соответствующий максимум зависит от выбранного допустимого управления $u(\cdot )$. В статье обосновывается существование минимума на множестве допустимых управлений от этого максимума.

    Various problems of control of trajectory bundles constitute an important object of study in modern mathematical control theory. Such problems arise, for example, in studying the motion of a flow of charged particles, and also in the presence of incomplete information about the initial state of the controlled system. In the present article, for a nonlinear controlled object of a quite general form on a fixed time interval $[0,T]$, the problem of control of trajectory bundles with a non-single-point initial set is considered. On the reachable set at the moment $T>0$, the problem of maximization of a given continuous function is studied. This problem can be interpreted as a problem on the spread of trajectories of the controlled object. The corresponding maximum depends on the chosen admissible control $u(\cdot )$. In the article, the existence of a minimum on the set of admissible controls from this maximum is substantiated.

  2. Теория управления - активно развивающийся в настоящее время раздел современной математики. Класс задач, изучаемый в рамках этой теории, достаточно обширен и включает как вопросы, связанные с существованием решений, так и вопросы, связанные с эффективными способами построения управляющих воздействий. Один из подходов к решению задач управления при неполной информации был предложен в основополагающей статье Ю.С. Осипова, опубликованной в журнале «Успехи математических наук» в 2006 году. В дальнейшем этот подход, названный методом пакетов программ, получил развитие, в частности, в статьях, цитированных в настоящей работе. Указанный подход основан на подходящей модификации известного в теории позиционных дифференциальных игр метода неупреждающих стратегий (квазистратегий) для решения задач управления при неизвестном начальном состоянии. Как известно, квазистратегии, отражающие свойства вольтерровости программных реализаций управлений с обратной связью на соответствующие программные возмущения, ориентированы на исследование задач с известным начальным состоянием при наличии неизвестных динамических возмущений. В стандартных задачах управления с неполной информацией динамические возмущения, как правило, отсутствуют, а неполнота информации обусловлена дефицитом информации о начальном состоянии системы. Аналогом свойств неупреждаемости для задач с неизвестными начальными состояниями и стали пакеты программ. Следует отметить, что во всех предыдущих исследованиях, связанных с методом пакетов программ, рассматривались задачи наведения на одно-единственное целевое множество. В настоящей работе для линейной стационарной управляемой динамической системы рассмотрена задача гарантированного наведения на семейство целевых множеств в случае неполной информации о начальном состоянии. Установлен критерий разрешимости этой задачи, основанный на методе пакетов программ, и приведен иллюстрирующий пример.

    Control theory is a section of modern mathematics being actively developed at present time. The class of problems investigated within the framework of this theory is quite extensive and includes issues related to the existence of solutions as well as issues related to the effective methods for constructing controls. One of the approaches to solving control problems under lack of information was suggested by Yu.S. Osipov in the fundamental paper published in the Russian Mathematical Surveys in 2006. Later, this approach, called the method of program packages, was developed, in particular, in the articles cited in this paper. This approach is based on a suitable modification of the method of non-anticipatory strategies (quasi-strategies) for solving control problems with unknown initial states. As is known, quasi-strategies reflecting the Volterra properties of program realizations of closed-loop controls in corresponding program disturbances are oriented to the investigation of problems with known initial states under the presence of unknown dynamical disturbances. Such disturbances are usually absent in standard control problems with incomplete information and incompleteness of information is due to a lack of information about the initial state of the system. So, program packages became an analogue of the properties of nonanticipativeness for problems with unknown initial states. It should be noted that in all previous works related to the method of program packages, the guidance problems to one single target set were considered. In the present paper the guaranteed guidance problem to a collection of target sets under incomplete information about the initial state is considered for a linear autonomous control dynamical system. The criterion for the solvability of that problem is established. It is based on the method of program packages. An illustrative example is given.

  3. Рассматривается дифференциальная игра двух лиц, описываемая системой вида $\dot x = f(x, u) + g(x, v)$, $x \in \mathbb R^k$, $u \in U$, $v \in V$. Множеством значений управлений преследователя является конечное подмножество фазового пространства. Множеством значений управлений убегающего является компактное подмножество фазового пространства. Целью преследователя является поимка, то есть приведение системы в любую заданную окрестность начала координат. Получены достаточные условия разрешимости задачи преследования в классе кусочно-программных стратегий преследователя. Также доказано, что независимо от действий убегающего время поимки стремится к нулю, если начальное состояние приближается к началу координат.

    A two-person differential game is considered. The game is described by the system of differential equations $\dot x = f(x, u) + g(x, v)$, where $x \in \mathbb R^k$, $u \in U$, $v \in V$. The pursuer's admissible control set is a finite subset of phase space. The evader's admissible control set is a compact subset of phase space. The pursuer's purpose is to capture the evader, viz. system translation to any given neighborhood of zero. Sufficient conditions for the solvability of a capture problem in the piecewise open-loop strategies class are obtained. In addition, it is proved that the capture time tends to zero with the initial position approaching to zero. It happens independent of the evader's actions.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref