Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Рекуррентные соотношения для сечений производящего ряда решения многомерного разностного уравнения, с. 414-423В данной работе изучены сечения производящего ряда для решений линейного многомерного разностного уравнения с постоянными коэффициентами и найдены рекуррентные соотношения, связывающие такие сечения. Как следствие, доказан многомерный аналог теоремы Муавра о рациональности сечений производящего ряда в зависимости от вида начальных данных задачи Коши для многомерного разностного уравнения. Для задач о числе путей на целочисленной решетке показано, что при подходящем выборе шагов сечения их производящего ряда представляют известные последовательности многочленов (Фибоначчи, Пелля и др.).
In this paper, we study the sections of the generating series for solutions to a linear multidimensional difference equation with constant coefficients and find recurrent relations for these sections. As a consequence, a multidimensional analogue of Moivre's theorem on the rationality of sections of the generating series depending on the form of the initial data of the Cauchy problem for a multidimensional difference equation is proved. For problems on the number of paths on an integer lattice, it is shown that the sections of their generating series represent the well-known sequences of polynomials (Fibonacci, Pell, etc.) with a suitable choice of steps.
-
Многие задачи управления движением и навигации, робототехники и компьютерной графики связаны с описанием вращения твердого тела в трехмерном пространстве. Для решения подобных задач дается конструктивное решение задачи о плавном перемещении твердого тела в пространстве ориентаций по кратчайшей траектории, проходящей через точки пространства, равномерно его заполняющие. Сферическому движению твердого тела ставится в соответствие движение точки по гиперсфере в четырехмерном пространстве по дугам большого радиуса, соединяющим вершины одного из правильных центросимметричных четырехмерных многогранников. Плавное движение обеспечивается выбором специальной нелинейной функции при интерполяции кватернионов, задающих положения вершин правильных многогранников. Для аналитического представления закона непрерывного движения используется оригинальное алгебраическое представление функции Хевисайда через линейную, квадратичную и иррациональную функции. Алгоритм плавного движения твердого тела через узлы однородной решетки на группе $SO(3)$ иллюстрируется анимацией, выполненной в компьютерной программе MathCad. Предложенный метод позволяет в широких пределах менять временные интервалы межузельных перемещений, а также законы движения на этих интервалах.
дискретное распределение на $SO(3)$, кратчайшие траектории, четырехмерные многогранники, интерполяция кватернионов, функция ХевисайдаMany tasks of motion control and navigation, robotics and computer graphics are related to the description of a rigid body rotation in three-dimensional space. We give a constructive solution for the smooth movement of a rigid body to solve such problems. The smooth movement in orientational space is along the shortest path. Spherical solid body motion is associated with the movement of the point on the hypersphere in four-dimensional space along the arcs of large radius through the vertices of regular four-dimensional polytope. Smooth motion is provided by the choice of a special nonlinear function of quaternion interpolation. For an analytical presentation of the law of continuous movement, we use the original algebraic representation of the Heaviside function. The Heaviside function is represented using linear, quadratic and irrational functions. The animations in the computer program MathCad illustrate smooth motion of a rigid body through the nodes of a homogeneous lattice on the group $SO(3)$. The algorithm allows one to change in a wide range the time intervals displacements between nodes, as well as the laws of motion on these intervals.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.