Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'locally conformal almost cosymplectic manifold':
Найдено статей: 1
  1. В работе описывается классификация локально конформного почти косимплектического многообразия ($\mathcal{LCAC_{S}}$-многообразия) в соответствии с тензором конгармонической кривизны. В частности, были получены необходимые условия $\Phi$ инвариантности тензора конгармонической кривизны на $\mathcal{LCAC_{S}}$-многообразии классов $CT_{i}$, $i = 1,2,3$. Кроме того, доказано, что любое $\mathcal{LCAC_{S}}$-многообразие класса $CT_{1}$ оказывается конгармоничным и $\Phi$-параконтактным.

    The authors classified a locally conformal almost cosympleсtic manifold ($\mathcal{LCAC_{S}}$-manifold) according to the conharmonic curvature tensor. In particular, they have determined the necessary conditions for a conharmonic curvature tensor on the $\mathcal{LCAC_{S}}$-manifold of classes $CT_{i}, i=1,2,3$ to be $\Phi$-quaisi invariant. Moreover, it has been proved that any $\mathcal{LCAC_{S}}$-manifold of the class $CT_{1}$ is conharmoniclly $\Phi$-paracontact.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref