Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Рассматривается линейная стационарная задача преследования с участием группы преследователей и группы убегающих при условиях, что матрица системы является скалярной, среди преследователей имеются как участники, у которых множество допустимых управлений совпадает с множеством допустимых управлений убегающих, так и участники с меньшими возможностями. Множеством значений допустимых управлений убегающих является шар с центром в нуле. Цель группы преследователей состоит в том, чтобы «переловить» всех убегающих. Цель группы убегающих - помешать этому, то есть предоставить возможность по крайней мере одному из убегающих уклониться от встречи. Преследователи и убегающие используют кусочно-программные стратегии. Показано, что если в игре, в которой все участники обладают равными возможностями, происходит уклонение от встречи хотя бы одного убегающего на бесконечном промежутке времени, то добавление любого числа преследователей с меньшими возможностями приводит к тому, что хотя бы один из убегающих уклонится от встречи на любом конечном промежутке времени.
A linear stationary pursuit problem with a group of pursuers and a group of evaders is considered under the following conditions: the matrix of the system is a scalar matrix, among the pursuers there are participants whose set of admissible controls coincides with the set of admissible controls of evaders, and there are participants with fewer opportunities. The set of values of admissible controls of evaders is a ball with center at the origin. The pursuers' goal is to capture all evaders. The evaders' goal is to prevent this, i.e. to provide an opportunity for at least one of them to escape meeting. Pursuers and evaders use piecewise-program strategies. It is shown that if all participants of the game have equal opportunities and at least one of the evaders avoids meeting on the infinite time interval, then the addition of any number of pursuers with fewer opportunities leads to evasion of at least one evader on any finite time interval.
-
Матричный шар третьего типа и обобщенный шар Ли, связанные с классическими областями, играют важную роль в теории функций многих комплексных переменных. В данной работе вычислены объемы матричного шара третьего типа и обобщенного шара Ли. Полные объемы этих областей необходимы для нахождения ядер интегральных формул для этих областей (ядра Бергмана, Коши-Сегё, Пуассона и т. д.). Кроме того, он используется для интегрального представления функции, голоморфной на этих областях, в теореме о среднем значении и других важных понятиях. Результаты, полученные в этой статье, являются общим случаем результатов Хуа Ло-кена, и его результаты в частных случаях совпадают с нашими результатами.
классические области, матричный шар первого типа, матричный шар второго типа, матричный шар третьего типа, обобщенный шар ЛиThe third-type matrix ball and the generalized Lie ball that are connected with classical domains play a crucial role in the theory of several complex variable functions. In this paper the volumes of the third type matrix ball and the generalized Lie ball are calculated. The full volumes of these domains are necessary for finding kernels of integral formulas for these domains (kernels of Bergman, Cauchy-Szegö, Poisson etc.). In addition, it is used for the integral representation of a function holomorphic on these domains, in the mean value theorem and other important concepts. The results obtained in this article are the general case of results of Hua Lo-ken and his results in particular cases coincides with our results.
-
Поимка двух скоординированных убегающих в линейной задаче преследования во временных шкалах, с. 397-409В конечномерном евклидовом пространстве рассматривается задача преследования группой преследователей двух убегающих, описываемая линейной системой с простой матрицей в заданной временно́й шкале. Предполагается, что убегающие используют одно и то же управление. Преследователи действуют согласно квазистратегиям на основе информации о начальных позициях и предыстории управления убегающих. Множество допустимых управлений для каждого из участников представляет собой шар единичного радиуса с центром в начале координат, терминальные множества — начало координат. Целью группы преследователей является поимка двух убегающих. При исследовании в качестве базового используется метод разрешающих функций, позволяющий получить достаточные условия разрешимости задачи сближения за некоторое гарантированное время. В терминах начальных позиций и параметров игры получено достаточное условие поимки убегающих.
In a finite-dimensional Euclidean space, we consider the problem of pursuit of two evaders by a group of pursuers, described by a linear system with a simple matrix on a given time scale. It is assumed that the evaders use the same control. The pursuers employ quasistrategies based on information about the initial positions and control history of the evaders. The set of admissible controls for each participant is a ball of unit radius centered at the origin, and the terminal sets are the origin. The goal of the group of pursuers is to capture the two evaders. In the study, we use the method of resolving functions as a base one, which allows us to obtain sufficient conditions for the solvability of the approach problem in a certain guaranteed time. In terms of the initial positions and parameters of the game, a sufficient condition for capturing the evaders is obtained.
-
О разрешимости краевых задач Дирихле и Неймана для уравнения Пуассона с множественной инволюцией, с. 651-667В пространстве $R^l$, $l\geq 2$, рассматриваются преобразования типа инволюции. Исследуются свойства матриц этих преобразований. Определена структура рассматриваемой матрицы и доказано, что матрица этих преобразований определяется элементами первой строки. Доказана также симметричность исследуемой матрицы. Кроме того, в явном виде найдены собственные векторы и собственные значения рассматриваемой матрицы. Найдена также обратная матрица и доказано, что обратная матрица имеет такую же структуру, как и основная матрица. В качестве приложений рассматриваемых преобразований введены и изучены свойства нелокального аналога оператора Лапласа. Для соответствующего нелокального уравнения Пуассона в единичном шаре исследованы вопросы разрешимости краевых задач Дирихле и Неймана. Доказана теорема об однозначной разрешимости задачи Дирихле, построены явный вид функции Грина и интегральное представление решения, а также найден порядок гладкости решения задачи в классе Гёльдера. Найдены также необходимые и достаточные условия разрешимости задачи Неймана, явный вид функции Грина и интегральное представление.
множественная инволюция, матрица преобразований, нелокальный оператор Лапласа, уравнение Пуассона, задача Дирихле, задача Неймана
On solvability of the Dirichlet and Neumann boundary value problems for the Poisson equation with multiple involution, pp. 651-667Transformations of the involution type are considered in the space $R^l$, $l\geq 2$. The matrix properties of these transformations are investigated. The structure of the matrix under consideration is determined and it is proved that the matrix of these transformations is determined by the elements of the first row. Also, the symmetry of the matrix under study is proved. In addition, the eigenvectors and eigenvalues of the matrix under consideration are found explicitly. The inverse matrix is also found and it is proved that the inverse matrix has the same structure as the main matrix. The properties of the nonlocal analogue of the Laplace operator are introduced and studied as applications of the transformations under consideration. For the corresponding nonlocal Poisson equation in the unit ball, the solvability of the Dirichlet and Neumann boundary value problems is investigated. A theorem on the unique solvability of the Dirichlet problem is proved, an explicit form of the Green's function and an integral representation of the solution are constructed, and the order of smoothness of the solution of the problem in the Hölder class is found. Necessary and sufficient conditions for the solvability of the Neumann problem, an explicit form of the Green's function, and the integral representation are also found.
-
Вопрос о возможности голоморфного продолжения в область функций, заданных на всей границе этой области, достаточно хорошо изучен. Представляет интерес задача описания функций, заданных на части границы, которые могут быть голоморфно продолжены в фиксированную область. В статье переформулируем рассматриваемую задачу: При выполнении каких условий можно голоморфно продолжить в матричный шар, функции заданных на части остова? Описаны области, в которые голоморфно продолжается интеграл типа Бохнера–Хуа Ло-кена для матричного шара. Получен основной результат нашей работы — критерий голоморфного продолжения в матричной шар функций, заданных на части остова матричного шара. Кратко излагаются доказательства нескольких основных результатов. Приводятся некоторые недавние достижения. Сформулированы нерешенные задачи. Результаты, полученные в этой статье, являются общими случаями результатов Л.А. Айзенберга, А.М. Кытманова, Г. Худайберганова.
матричной шар, граница Шилова, интеграл Бохнера–Хуа Ло-кена, пространство Харди, голоморфное продолжение, ортонормальная система
Holomorphic continuation into a matrix ball of functions defined on a piece of its skeleton, pp. 296-310The question of the possibility of holomorphic continuation into some domain of functions defined on the entire boundary of this domain has been well studied. The problem of describing functions defined on a part of the boundary that can be extended holomorphically into a fixed domain is attracting more interest. In this article, we reformulate the problem under consideration: Under what conditions can we extend holomorphically to a matrix ball the functions given on a part of its skeleton? We describe the domains into which the integral of the Bochner—Hua Luogeng type for a matrix ball can be extended holomorphically. As the main result, we present the criterion of holomorphic continuation into a matrix ball of functions defined on a part of the skeleton of this matrix ball. The proofs of several results are briefly presented. Some recent advances are highlighted. The results obtained in this article generalize the results of L.A. Aizenberg, A.M. Kytmanov and G. Khudayberganov.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.