Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'nonlinear parabolic equations':
Найдено статей: 5
  1. Рассмотрена математическая модель конкуренции в условиях биологической инвазии, записываемая в виде системы нелинейных уравнений параболического типа. Изучается конкуренция двух близкородственных видов — резидента и инвайдера. Динамика популяций на неоднородном ареале определяется локальным взаимодействием и диффузионным распространением. Для популяции инвайдера учитывается межвидовой таксис и направленная миграция, вызванная неоднородностью жизненных условий. В вычислительных экспериментах определены наборы миграционных параметров, отвечающих различным инвазивным сценариям. Дан анализ влияния начальных распределений на конкурентное исключение и сосуществование видов.

    A mathematical model of competition under conditions of biological invasion, written in the form of a system of nonlinear parabolic equations, is considered. The competition of two closely related species — resident and invader — is studied. The dynamics of populations in a heterogeneous area is determined by local interaction and diffusion. For the invader population, interspecific taxis and directed migration caused by heterogeneity of living conditions are taken into account. In computational experiments, sets of migration parameters corresponding to various invasion scenarios are determined. An analysis of the influence of initial distributions on competitive exclusion and coexistence of species is given.

  2. Изучается многомерный случай нелинейной системы реакции-диффузии, моделируемый системой двух уравнений параболического типа со степенными нелинейностями. Такого рода системы можно применять для моделирования процесса распространения в пространстве взаимодействующих распределенных формаций роботов двух типов. Такие уравнения описывают также процессы нелинейной диффузии в реагирующих двухкомпонентных сплошных средах. Предложен оригинальный вариант метода редукции, сводящий построение зависимости точного решения от пространственных переменных к решению уравнения Гельмгольца, а зависимости от времени — к решению линейной системы обыкновенных дифференциальных уравнений. Построен ряд примеров многопараметрических семейств точных решений, задаваемых элементарными функциями.

    Kosov A.A., Semenov E.I., Tirskikh V.V.
    On multidimensional exact solutions of a nonlinear reaction-diffusion system, pp. 225-239

    We study a multidimensional case of a nonlinear reaction-diffusion system modeled by a system of two parabolic equations with power nonlinearities. Such systems can be used to simulate the process of propagation in space of interacting distributed formations of robots of two types. Such equations also describe the processes of nonlinear diffusion in reacting two-component continuous media. An original version of the reduction method is proposed, which reduces the construction of the dependence of the exact solution on spatial variables to the solution of the Helmholtz equation, and the dependence on time to the solution of a linear system of ordinary differential equations. A number of examples of multiparameter families of exact solutions given by elementary functions are constructed.

  3. Пусть $U$ — множество допустимых управлений, $T>0$ и задана шкала банаховых пространств $W[0;\tau]$, $\tau\in(0;T]$, такая, что множество сужений функций из $W=W[0;T]$ на $[0;\tau]$ совпадает с $W[0;\tau]$; $F[.;u]\colon W\to W$ — управляемый вольтерров оператор, $u\in U$. Ранее для операторного уравнения $x=F[x;u]$, $x\in W$, автором была введена система сравнения в форме функционально-интегрального уравнения в пространстве $\mathbf{C}[0;T]$. Было установлено, что для сохранения (относительно малых вариаций правой части) глобальной разрешимости операторного уравнения достаточно сохранения глобальной разрешимости указанной системы сравнения, а также установлены соответствующие достаточные условия. В данной статье рассматриваются дальнейшие примеры приложения этой теории: нелинейное волновое уравнение, сильно нелинейное волновое уравнение, нелинейное уравнение теплопроводности, сильно нелинейное параболическое уравнение.

    Let $U$ be the set of admissible controls, $T>0$, and let $W[0;\tau]$, $\tau\in(0;T]$, be a scale of Banach spaces such that the set of restrictions of functions from $W=W[0;T]$ to $[0;\tau]$ coincides with $W[0;\tau]$; let $F[.;u]\colon W\to W$ be a controlled Volterra operator, $u\in U$. Earlier, for the operator equation $x=F[x;u]$, $x\in W$, the author introduced a comparison system in the form of a functional integral equation in the space $\mathbf{C}[0;T]$. It was established that to preserve (under small perturbations of the right-hand side) the global solvability of the operator equation, it is sufficient to preserve the global solvability of the specified comparison system, and the corresponding sufficient conditions were established. In this paper, further examples of application of this theory are considered: nonlinear wave equation, strongly nonlinear wave equation, nonlinear heat equation, strongly nonlinear parabolic equation.

  4. Рассматривается нелинейное функционально-операторное уравнение типа Гаммерштейна, представляющее собой удобную форму описания широкого класса управляемых распределенных систем. Для указанного уравнения доказываются теорема единственности решения, а также мажорантный признак тотально (по всему множеству допустимых управлений) глобальной разрешимости, использующий предположения о вольтерровости операторной составляющей и о дифференцируемости по переменной состояния функциональной составляющей правой части. Кроме того, используются предположения о глобальной разрешимости исходного уравнения для фиксированного допустимого управления $u=v$, а также о глобальной разрешимости некоторого мажорантного уравнения с правой частью, зависящей от максимального отклонения допустимых управлений от управления $v$. В качестве примера рассматривается первая краевая задача для параболического уравнения второго порядка с правой частью $f\bigl( t, x(t),u(t)\bigr)$, $t=\{ t_0,\overline{t}\}\in\Pi=(0,T)\times Q$, $Q\subset\mathbb{R}^n$, $x$ - фазовая переменная, $u$ - управляющая переменная. Здесь решение мажорантного уравнения можно представить как решение начально-краевой задачи аналогичного вида с правой частью $bx^{q/2}+a_0x+Z$, при нулевых начально-краевых условиях, $Z(t)=\max\limits_{u\in\mathcal{V}(t)} |f(t,x[v](t),u)-f(t,x[v](t),v(t))|$, $\mathcal{V}(t)\subset\mathbb{R}^s$ - множество допустимых значений управления при $t\in\Pi$, $q>2$, $s\in\mathbb{N}$; $a_0(.)$ и $b\geqslant0$ - параметры, определяемые по $f^\prime_x$.

    We consider a nonlinear functional operator equation of the Hammerstein type which is a convenient form of representation for a wide class of controlled distributed parameter systems. For the equation under study we prove a solution uniqueness theorem and a majorant sign for the totally (with respect to a whole set of admissible controls) global solvability subject to Volterra property of the operator component and differentiability with respect to a state variable of the functional component in the right hand side. Moreover, we use hypotheses on the global solvability of the original equation for a fixed admissible control $u=v$ and on the global solvability for some majorant equation with the right hand side depending on maximal deviation of admissible controls from the control $v$. For example we consider the first boundary value problem associated with a parabolic equation of the second order with right hand side $f\bigl( t, x(t),u(t)\bigr)$, $t=\{ t_0,\overline{t}\}\in\Pi=(0,T)\times Q$, $Q\subset\mathbb{R}^n$, where $x$ is a phase variable, $u$ is a control variable. Here, a solution to majorant equation can be represented as a solution to the zero initial-boundary value problem of the same type for analogous equation with the right hand side $bx^{q/2}+a_0x+Z$, where $Z(t)=\max\limits_{u\in\mathcal{V}(t)} |f(t,x[v](t),u)-f(t,x[v](t),v(t))|$, $\mathcal{V}(t)\subset\mathbb{R}^s$ is a set of admissible values for control at $t\in\Pi$, $q>2$, $s\in\mathbb{N}$; $a_0(.)$ and $b\geqslant0$ are parameters defined from $f^\prime_x$.

  5. Доказываются достаточные условия поточечной управляемости по нелинейному функционалу для нелинейных распределенных систем, допускающих представление в виде вольтеррова функционально-операторного уравнения в лебеговом пространстве, на заданном множестве D конечномерных аппроксимаций управления. Определяется множество глобальной разрешимости Ω как множество всех управлений из D, для каждого из которых уравнение имеет единственное глобальное решение. В качестве вспомогательного результата, представляющего самостоятельный интерес, доказывается, что при сделанных предположениях выполняется равенство Ω = D. Сведение управляемых распределенных систем к изучаемому функционально-операторному уравнению иллюстрируется на двух примерах: первой краевой задачи для параболического уравнения второго порядка и смешанной задачи для гиперболического уравнения второго порядка; и то, и другое уравнение достаточно общего вида.

    For nonlinear distributed systems representable as a Volterra functional operator equation in a Lebesgue space, sufficient conditions for pointwise controllability with respect to a nonlinear functional are proved. The controls are assumed to belong to a given set D of piecewise constant vector functions id est can be regarded as discretized controls. For the equation under study we define the set Ω of global solvability as the set of all admissible controls for which the equation has a global solution. As an auxiliary result having a separate interest, we also establish under our hypotheses the equality Ω = D. The reduction of controlled distributed systems to the functional operator equation under study is illustrated by two examples, namely a Dirichlet boundary value problem for a second order parabolic equation and a mixed boundary value problem for a second order hyperbolic equation; both equations of a rather general form.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref