Об управляемости нелинейных распределенных систем на множестве конечномерных аппроксимаций управления

 pdf (272K)

Доказываются достаточные условия поточечной управляемости по нелинейному функционалу для нелинейных распределенных систем, допускающих представление в виде вольтеррова функционально-операторного уравнения в лебеговом пространстве, на заданном множестве D конечномерных аппроксимаций управления. Определяется множество глобальной разрешимости Ω как множество всех управлений из D, для каждого из которых уравнение имеет единственное глобальное решение. В качестве вспомогательного результата, представляющего самостоятельный интерес, доказывается, что при сделанных предположениях выполняется равенство Ω = D. Сведение управляемых распределенных систем к изучаемому функционально-операторному уравнению иллюстрируется на двух примерах: первой краевой задачи для параболического уравнения второго порядка и смешанной задачи для гиперболического уравнения второго порядка; и то, и другое уравнение достаточно общего вида.

Ключевые слова: нелинейные распределенные системы, управляемость, конечномерные аппроксимации управления, вольтеррово функционально-операторное уравнение
Цитата: Вестник Удмуртского университета. Математика. Механика. Компьютерные науки, 2013, вып. 1, с. 83-98
DOI: 10.20537/vm130108

On controllability of nonlinear distributed systems on a set of discretized controls

For nonlinear distributed systems representable as a Volterra functional operator equation in a Lebesgue space, sufficient conditions for pointwise controllability with respect to a nonlinear functional are proved. The controls are assumed to belong to a given set D of piecewise constant vector functions id est can be regarded as discretized controls. For the equation under study we define the set Ω of global solvability as the set of all admissible controls for which the equation has a global solution. As an auxiliary result having a separate interest, we also establish under our hypotheses the equality Ω = D. The reduction of controlled distributed systems to the functional operator equation under study is illustrated by two examples, namely a Dirichlet boundary value problem for a second order parabolic equation and a mixed boundary value problem for a second order hyperbolic equation; both equations of a rather general form.

Keywords: nonlinear distributed systems, controllability, discretized controls, Volterra functional operator equation
Citation in English: Bulletin of Udmurt University. Mathematics, Mechanics, Computer Science, 2013, issue 1, pp. 83-98

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref