Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
В прямоугольной области исследуются нелокальные краевые задачи для одномерного нестационарного уравнения конвекции-диффузии дробного порядка с переменными коэффициентами, описывающие диффузионный перенос той или иной субстанции, а также перенос, обусловленный движением среды. Методом энергетических неравенств выводятся априорные оценки решений нелокальных краевых задач в дифференциальной форме. Построены разностные схемы, и для них доказываются аналоги априорных оценок в разностной форме, приводятся оценки погрешности в предположении достаточной гладкости решений уравнений. Из полученных априорных оценок следуют единственность и устойчивость решения по начальным данным и правой части, а также сходимость решения разностной задачи к решению соответствующей дифференциальной задачи со скоростью $O(h^2+\tau^2)$.
нелокальные краевые задачи, априорная оценка, нестационарное уравнение конвекции-диффузии, дифференциальное уравнение дробного порядка, дробная производная КапутоIn the rectangular region, we study nonlocal boundary value problems for the one-dimensional unsteady convection-diffusion equation of fractional order with variable coefficients, describing the diffusion transfer of a substance, as well as the transfer due to the motion of the medium. A priori estimates of solutions of nonlocal boundary value problems in differential form are derived by the method of energy inequalities. Difference schemes are constructed and analogs of a priori estimates in the difference form are proved for them, error estimates are given under the assumption of sufficient smoothness of solutions of equations. From the obtained a priori estimates, the uniqueness and stability of the solution from the initial data and the right part, as well as the convergence of the solution of the difference problem to the solution of the corresponding differential problem at the rate of $O(h^2+\tau^2)$.
-
Рассматривается нестационарное движение жидкой бинарной смеси в узком протяженном горизонтальном канале с твердыми стенками, нагревающимися по определенному закону. Используется возможность применения решения Остроумова-Бириха к описанию исследуемого течения, что сводит задачу к решению смешанной краевой задачи для системы параболических уравнений. Особенностью задачи является дополнительное к граничным интегральное условие на расход жидкости, позволяющее вместе с функциями скорости, температуры и концентрации находить горизонтальный градиент давления. Посредством построенной численной процедуры решения поставленной задачи проводится анализ полученных характеристик движения при использовании в качестве смеси водного спиртового раствора. Показаны возможности стабилизации нестационарного течения и управления движением посредством периодически меняющейся тепловой нагрузки на стенке канала.
уравнения Обербека-Буссинеска, термодиффузия, решение Остроумова-Бириха, численное решение нестационарной задачи тепломассопереноса
Numerical solution of nonstationary problem for convection of binary mixture in horizontal layer, pp. 365-381Nonstationary motion of a liquid binary mixture in a narrow long horizontal channel with rigid walls heated according to a certain law is considered. The possibility of applying the Ostroumov-Birikh solution to the description of the flow under study is used. It reduces the problem to solving a mixed boundary value problem for a system of parabolic equations. A feature of the problem is an additional integral condition on the fluid flow rate. It allows finding the pressure gradient together with the functions of velocity, temperature, and concentration. Applying the constructed numerical procedure, the analysis of the obtained characteristics of motion is carried out using water-ethanol solution as a mixture. The possibilities of stabilizing the unsteady flow and controlling the motion by means of a periodically changing thermal load on the channel wall are shown.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.