Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'nonstationary convection-diffusion equation':
Найдено статей: 2
  1. В прямоугольной области исследуются нелокальные краевые задачи для одномерного нестационарного уравнения конвекции-диффузии дробного порядка с переменными коэффициентами, описывающие диффузионный перенос той или иной субстанции, а также перенос, обусловленный движением среды. Методом энергетических неравенств выводятся априорные оценки решений нелокальных краевых задач в дифференциальной форме. Построены разностные схемы, и для них доказываются аналоги априорных оценок в разностной форме, приводятся оценки погрешности в предположении достаточной гладкости решений уравнений. Из полученных априорных оценок следуют единственность и устойчивость решения по начальным данным и правой части, а также сходимость решения разностной задачи к решению соответствующей дифференциальной задачи со скоростью $O(h^2+\tau^2)$.

    In the rectangular region, we study nonlocal boundary value problems for the one-dimensional unsteady convection-diffusion equation of fractional order with variable coefficients, describing the diffusion transfer of a substance, as well as the transfer due to the motion of the medium. A priori estimates of solutions of nonlocal boundary value problems in differential form are derived by the method of energy inequalities. Difference schemes are constructed and analogs of a priori estimates in the difference form are proved for them, error estimates are given under the assumption of sufficient smoothness of solutions of equations. From the obtained a priori estimates, the uniqueness and stability of the solution from the initial data and the right part, as well as the convergence of the solution of the difference problem to the solution of the corresponding differential problem at the rate of $O(h^2+\tau^2)$.

  2. Рассматривается нестационарное движение жидкой бинарной смеси в узком протяженном горизонтальном канале с твердыми стенками, нагревающимися по определенному закону. Используется возможность применения решения Остроумова-Бириха к описанию исследуемого течения, что сводит задачу к решению смешанной краевой задачи для системы параболических уравнений. Особенностью задачи является дополнительное к граничным интегральное условие на расход жидкости, позволяющее вместе с функциями скорости, температуры и концентрации находить горизонтальный градиент давления. Посредством построенной численной процедуры решения поставленной задачи проводится анализ полученных характеристик движения при использовании в качестве смеси водного спиртового раствора. Показаны возможности стабилизации нестационарного течения и управления движением посредством периодически меняющейся тепловой нагрузки на стенке канала.

    Nonstationary motion of a liquid binary mixture in a narrow long horizontal channel with rigid walls heated according to a certain law is considered. The possibility of applying the Ostroumov-Birikh solution to the description of the flow under study is used. It reduces the problem to solving a mixed boundary value problem for a system of parabolic equations. A feature of the problem is an additional integral condition on the fluid flow rate. It allows finding the pressure gradient together with the functions of velocity, temperature, and concentration. Applying the constructed numerical procedure, the analysis of the obtained characteristics of motion is carried out using water-ethanol solution as a mixture. The possibilities of stabilizing the unsteady flow and controlling the motion by means of a periodically changing thermal load on the channel wall are shown.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref