Текущий выпуск Выпуск 2, 2025 Том 35
Результыты поиска по 'operations research':
Найдено статей: 5
  1. Изучаются свойства дискретной вариационной задачи динамической аппроксимации в комплексном евклидовом (L + 1)-мерном пространстве E. Она обобщает известные задачи среднеквадратической полиномиальной аппроксимации функций, заданных своими отсчетами в конечном интервале. В рассматриваемой задаче аппроксимация последовательности y = {yi}L0 отсчетов функции y(t) ∈ L2[0, T], T = Lh на сетке Ih осуществляется решениями однородных линейных дифференциальных или разностных уравнений заданного порядка n с постоянными, но, возможно, неизвестными коэффициентами. Тем самым показано, что в последнем случае задача аппроксимации включает в себя и задачу идентификации. Анализ ее особенностей - основная тема статьи. Ставится задача нахождения вектора коэффициентов разностного уравнения Σn0 ŷi+k αi = 0, где k = 0,Ln. Оптимизируются коэффициенты и начальные условия переходного процесса y этого уравнения. Цель оптимизации - наилучшая аппроксимация исследуемого динамического процесса yE. Критерий аппроксимации  минимум величины ||yŷ||2E. Показано, что изучаемая вариационная задача сводится к задачам проектирования в E вектора y на ядра разностных операторов с неизвестными коэффициентами αωSEn+1. Здесь α - направление, S - сфера или гиперплоскость. Показана связь изучаемой задачи с задачами дискретизации и идентифицируемости. Тогда координаты вектора yE есть точное решение дифференциального уравнения на сетке Ih и y = ŷ. Дано сравнение изучаемой задачи вариационной идентификации с алгебраическими методами идентификации. Показано, что ортогональные дополнения к ядрам разностных операторов всегда имеют теплицев базис. Это приводит к быстрым проекционным алгоритмам вычислений. Показано, что задача нахождения оптимального вектора α сводится к задаче безусловной минимизации функционала идентификации, зависящего от направления в En+1. Предложена итерационная процедура его минимизации на сфере с широкой областью и высокой скоростью сходимости. Изучаемую вариационную задачу можно применять при математическом моделировании в управлении и научных исследованиях. При этом на конечных интервалах может использоваться, в частности, возможность кусочно-линейной динамической аппроксимации сложных динамических процессов разностными и дифференциальными уравнениями указанного типа.

     

    Some properties of the discrete variational problem of the dynamic approximation in the complex Euclidean (L + 1)-dimensional space are studied here. It generalizes familiar problems of the mean square polynomial approximation of the functions given on the finite interval in accordance with their references. In the problem under consideration sequence approximation y = {yi}L0 of the references of the function y(t) ∈ L2[0, T], T = Lh on the lattice Ih is achieved by solving homogeneous linear differential equations or difference equations of the given order n with constant but possibly unknown coefficients. Thus, it is shown that in the latter case the approximation problem also includes the identification problem. The analysis of its properties is the main subject of the article. The problem is set to find vector of coefficients of difference equation Σn0 ŷi+k αi = 0, where k = 0,L − n. Coefficients and initial conditions of the transient process by of this equation are optimized. The optimization purpose is to achieve the best approximation of the dynamic process y ∈ E being considered here. The approximation criterion is a minimum of the quantity ||y − ŷ||2E. The variational problem under study is shown to be reduced to the problem of projecting vector y in E on the kernels of the difference operators with unknown coefficients  αωSEn+1, where is a direction, S is a sphere or a hyperplane. The problem under study is shown to be related to the problems of the discretization and identifiability. In this case vector coordinates y ∈ E is an exact solution of differential equation on the lattice Ih and y = ŷ. The problem of the variational identification is compared with algebraic methods of identification. The orthogonal complement to the kernels of the difference operators are shown to always have Toeplitz basis. This results in fast projecting algorithms of computation. The problem of finding optimal vector α is shown to be reduced to the problem of the absolute minimization of the identification functional depending on the direction in En+1. The iterative procedure of its minimization on a sphere with wide domain and high speed of convergence is presented here. The variational problem considered here can be applied in mathematical modeling for control problem and research purposes. On the finite intervals, for example, it is possible to use piecewise-linear dynamic approximations of the complex dynamic processes with difference and differential equations of the specified type.

     

  2. В работе изучена следующая задача: для линейной автономной дифференциально-разностной системы нейтрального типа с запаздыванием в состоянии требуется обеспечить ее полное успокоение с помощью обратной связью. Для решения указанной задачи предложен линейный автономный динамический дифференциально-разностный регулятор типа обратной связи по состоянию, не выводящий замкнутую систему из исходного класса линейных автономных систем нейтрального типа. Достаточное условие существования такого регулятора совпадает с критерием полной управляемости. Кроме того, замкнутая система будет иметь конечный спектр, что существенно упрощает задачу вычисления текущего состояния в ходе технической реализации регулятора. Основная идея исследования заключается в выборе параметров регулятора так, чтобы замкнутая система стала точечно вырожденной в направлениях, отвечающих фазовым компонентам исходной (разомкнутой) системы. Для этого на начальном этапе исходная система обратной связью приводится к системе запаздывающего типа с одним входом. Далее для полученного объекта строится динамический регулятор, обеспечивающий вырождение соответствующих фазовых компонент.

    Предложенная процедура построения управляющего воздействия базируется на алгебраических свойствах оператора сдвига и не предполагает вычисления корней характеристического квазиполинома исходной системы. Возможно ее использование для обеспечения замкнутой системе не только полного успокоения, но и экспоненциальной устойчивости. Однако в последнем случае возникает необходимость использовать динамические регуляторы с обратной связью по состоянию интегрального типа.

    Metel'skii A.V., Khartovskii V.E., Urban O.I.
    Calming the solution of systems of neutral type with many delays using feedback, pp. 40-51

    This paper examines the following problem: a linear autonomous differential-difference system of neutral type with delay in state requires ensuring its complete calming by feedback. To solve this problem linear autonomous dynamic differential-difference controller with state feedback is proposed; this controller does not exclude a closed system from the original class of linear autonomous systems of neutral type. Sufficient condition for the existence of such a controller coincides with the criterion of complete controllability. In addition, the closed system has a finite spectrum, which simplifies greatly the problem of calculating the current state during the technical implementation of the controller. The basic idea of research is to select parameters for the controller so that the closed system becomes point-degenerated in directions corresponding to phase components of the original (open) system. To do this, the original system is first converted via feedback to the single-input system of retarded type. Further, for the resulting object the dynamic controller that provides the degeneracy of the corresponding phase components is constructed.

    The proposed procedure for constructing the control action is based on the algebraic properties of shift operator and does not involve calculating the roots of characteristic quasipolynomial of the original system. It can be used to provide full calming as well as exponential stability to a closed system. However, in the latter case it is necessary to use dynamic controller with state feedback of integral type.

  3. Последние 15 лет в физической литературе активно изучаются майорановские локализованные состояния (МЛС) и сопутствующие их возникновению явления, такие, как изменение кондактанса и эффект Джозефсона, что обусловлено вероятным применением МЛС при создании квантового компьютера. В статье изучены собственные функции одномерного оператора Боголюбова-де Жена с дельтаобразным потенциалом в нуле, описывающие локализованные состояния с энергией в лакуне спектра (сверхпроводящей щели). Найдены вероятности прохождения в задаче рассеяния для этого оператора, когда энергии близки к границе сверхпроводящей щели. Эти задачи исследовались как для единого на всей прямой сверхпроводящего порядка, определяемого вещественной константой $\Delta,$ так и для сверхпроводящего порядка, определяемого функцией $\Delta \theta (-x)+\Delta e^{i\varphi} \theta (x)$ для $\varphi=0,\pi$ (т.е. для нулевого сверхпроводящего тока и тока, близкого к критическому). Используемый гамильтониан можно рассматривать как простейшую модель перехода Джозефсона. Доказано, что в обоих случаях существуют два МЛС, но лишь при определенных значениях параметров, т.е. МЛС неустойчивы. При этом вероятность прохождения равна нулю в обоих случаях.

    For the last 15 years, Majorana bounded states (MBSs) and associated phenomena, such as variation of conductance and the Josephson effect, have been actively studied in the physical literature. Research in this direction is motivated by a highly probable use of MBSs in quantum computing. The article studies the eigenfunctions of the one-dimensional Bogolyubov-de Gennes operator with a delta-shaped potential at zero, describing localized states with energy in the spectral gap (superconducting gap). The transmission probabilities are found in the scattering problem for this operator, when the energies are close to the boundary of the superconducting gap. These problems are studied both for a superconducting order that is the only one on the whole straight line and is defined by the real constant $\Delta,$ and for a superconducting order defined by the function $\Delta\theta(-x)+\Delta e^{i\varphi}\theta(x)$ for $\varphi=0,\pi$ (i.e., for zero superconducting current and for current close to critical). The Hamiltonian used can be considered as the simplest model of the Josephson junction. It is proved that in both cases there are two MBSs, but with certain values of the parameters, i.e., MBSs are unstable. Moreover, the probability of passage is zero in both cases.

  4. В теории игр и теории исследования операций часто появляется минимакс от функции $f(x,y)$, зависящей от двух векторных переменных $x$, $y$. Изучению свойств минимакса (или максимина) посвящено много работ. Минимакс можно трактовать как наименьший гарантированный результат для минимизирующего игрока (минимизирующей оперирующей стороны). При изучении минимаксных задач определенный интерес представляют различные вопросы о корректности. Одному из таких вопросов посвящена настоящая статья. В ней векторы $x$, $y$ принадлежат компактам $P$, $Q$ из соответствующих евклидовых пространств $R^k$, $R^l$, а функция $f(x,y)$ непрерывна на произведении пространств $R^k\times R^l$. В статье рассматривается вопрос о зависимости минимакса от малых изменений компактов $P$, $Q$ в метрике Хаусдорфа. Обосновывается непрерывность зависимости минимакса от малых вариаций множеств $P$, $Q$.

    Nikol'skii M.S.
    On one correctness problem for minimax, pp. 275-280

    In game theory and operations research theory, a minimax often appears for a function $f(x,y)$ that depends on two vector variables $x$, $y$. Many works have been devoted to the study of the properties of minimax (or maximin). A minimax can be interpreted as the smallest guaranteed result for the minimizing player (the minimizing operator). In the study of minimax problems, various correctness issues are of some interest. This paper is devoted to one of these issues. In it, vectors $x$, $y$ belong to compacts $P$, $Q$ of corresponding Euclidean spaces $R^k$, $R^l$, and function $f(x,y)$ is continuous on product of spaces $R^k\times R^l$. The paper considers the dependence of minimax on small changes of compacts $P$, $Q$ in the Hausdorff metric. The continuity of the dependence of minimax on small variations of compacts $P$, $Q$ is proved.

  5. В работе формализуется задача оптимизации сопутствующего производства на гибких или реконфигурируемых производствах. В рассматриваемой постановке на входе задан набор обязательных изделий, требуется решить две взаимосвязанные подзадачи: 1) для каждого изделия из набора обязательных сформировать группу дополнительных изделий, которые могут быть произведены без изменения состояния производства, и 2) определить порядок переналадок производства между группами дополнительных изделий, а также «точки входа и выхода» в каждую из групп. В настоящей работе указанные подзадачи рассматриваются последовательно: первая подзадача сведена к задаче поиска клики максимального веса в ориентированном графе, вторая - к кластерной задаче коммивояжера. В ходе масштабных вычислительных экспериментов изучен выигрыш от применения эффективных современных методов решения обеих подзадач в сравнении с жадным решением, моделирующим рациональные действия человека-оператора в условиях большой размерности исходной комплексной задачи и ограниченного времени, имеющегося для ее решения.

    The paper is devoted to the problem of optimization of accompanying manufacturing in flexible or reconfigurable manufacturing systems. Using a set of obligatory products as an input, the initial problem is reduced to two interrelated subproblems: 1) for each product from the set of obligatory products, form a group of additional (accompanying) products that can be manufactured without changing the state of production, and 2) determine the order of manufacturing changeovers between the groups of additional products, as well as the “points of entry and exit” for each group. The subproblems are considered sequentially: the first subproblem is reduced to the maximum weight clique problem, the second - to the cluster traveling salesman problem. Large-scale computational experiments were conducted to reveal the benefits of applying effective modern methods for solving both subproblems in comparison with the greedy solution (which models the rational actions of a human operator solving large accompanying manufacturing problems in short time).

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref