Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
В данной работе представлен новый подход к интерпретации логических формул для синтеза алгоритмов и программ. Предложенный метод сочетает в себе черты реализации Клини и интерпретации Гёделя «диалектика», но не опирается на них непосредственно. Рассматривается простой вариант позитивного языка логики предикатов без функций, с конъюнкцией, дизъюнкцией, импликацией и кванторами всеобщности и существования. Описана новая реализационная семантика формул и секвенций, в которой рассматривается не просто реализация формулы, а реализация с дополнительной поддержкой. Реализация примерно соответствует реализации Клини. Поддержка предоставляет дополнительные данные в пользу того, что реализация корректна. Поддержка должна подтвердить, что реализация работает корректно для формулы в любых корректных условиях применения. Представлен язык доказательств, для которого доказана теорема о корректности, показывающая, что любая выводимая секвенция имеет реализацию и поддержку, подтверждающую, что эта реализация работает правильно для этой формулы в любых корректных условиях при подходящем интерпретаторе используемых программ.
-
Для общей краевой задачи функционально-дифференциального уравнения получены условия непрерывной зависимости решения от параметров. Результаты применены к исследованию корректности линейной общей краевой задачи для нелинейного дифференциального уравнения с отклоняющимся аргументом и непрерывной зависимости периодических решений управляемых систем от значений управления и отклонения аргумента.
-
Работа посвящена исследованию свойства замкнутости относительно операции сложения множества равномерных почти периодических функций. Показано, что доказательство этого свойства, проведенное в монографии Б.П. Демидовича «Лекции по математической теории устойчивости», содержит пробел. Приведено корректное доказательство.
-
После статьи Молодцова [Molodtsov D. Soft set theory — First results // Computers and Mathematics with Applications. 1999. Vol. 37. No. 4-5. P. 19-31.] теория мягких множеств начала стремительно развиваться. Несколько авторов ввели различные операции, отношения, результаты и т.д., а также другие аспекты в теории мягких множеств и гибридных структур некорректно, несмотря на их широкое применение в математике и смежных областях. В своей работе [Molodtsov D.A. Equivalence and correct operations for soft sets // International Robotics and Automation Journal. 2018. Vol. 4. No. 1. P. 18-21.], Молодцов, отец теории мягких множеств, указал на несколько неверных результатов и понятий. Молодцов [Молодцов Д.А. Структура мягких множеств // Нечеткие системы и мягкие вычисления. 2017. Т. 12. Вып. 1. С. 5-18.] также заявил, что понятие мягкого множества не везде было полностью понято и использовано. В связи с этим важно пересмотреть причуды этих представлений и дать формальное изложение понятия эквивалентности мягкого множества. Молодцов уже исследовал многие корректные операции над мягкими множествами. Мы используем некоторые понятия и результаты Молодцова [Молодцов Д.А. Структура мягких множеств // Нечеткие системы и мягкие вычисления. 2017. Т. 12. Вып. 1. С. 5-18.] для создания матричных представлений, а также связанных с ними операций над мягкими множествами, и для количественной оценки сходства между двумя мягкими множествами.
-
Интерактивные реализации логических формул, с. 177-193Рассматривается новое конструктивное понимание логических формул, согласованное с интуицией и с традиционными средствами конструктивного логического вывода. Новое понимание логически проще традиционной реализуемости (в смысле кванторной глубины), но является также естественным с точки зрения алгоритмического решения задач. Это понимание, кроме свидетельства (реализации, подтверждения) понимаемой формулы, привлекает понятия теста (противодействия, препятствия) этой реализации на данной формуле. Для понимания формулы $A$ рассматриваются предложения вида $a:A:b.$ Это предложение означает, что объект $a$ (выдвигаемый в подтверждение формулы $A$) выигрывает у объекта $b$ (который противодействует выполнению формулы $A$) формулу $A$ в процессе осуществления специальной процедуры сопоставления этих объектов друг с другом и с данной формулой. Данная процедура может считаться некоторой процедурой арбитража для вынесения необходимого решения. Базис процедуры арбитража для атомарных формул задается интерпретацией языка. Процедура для сложных предложений задается специальными правилами определения смысла логических связок. При наиболее естественном определении процедура арбитража имеет полиномиальную временную сложность. Формула $A$ считается истинной в новом смысле этого слова, если имеется подтверждение, выигрывающее ее у всех возможных противодействий. Рассматривается логический язык без отрицаний. Доказана теорема о корректности в новом смысле традиционных интуиционистских аксиом и правил вывода. При этом рассматривается секвенциальное логическое исчисление, ориентированное на обратный метод поиска вывода.
-
Корректная разрешимость задач управления для систем дифференциальных уравнений неявного вида, с. 49-64Сформулированы теоремы о существовании решений, оценках решений и корректной разрешимости уравнений с накрывающими отображениями в произведении метрических пространств. Рассмотрены условия накрывания оператора Немыцкого в функциональных пространствах. Утверждения о накрывающих отображениях применяются к исследованию управляемых систем, описываемых обыкновенными дифференциальными уравнениями, не разрешенными относительно производной искомой функции. Получены условия существования решений и их оценки, а также исследован вопрос непрерывной зависимости решений от параметров управляемых систем дифференциальных уравнений со смешанными ограничениями на управление и дополнительным ограничением на производную решения.
-
О некоторых свойствах *-интеграла, с. 66-89Продолжаются исследования автора по теории правильных функций и *-интеграла. Изучается возможность представления правильной функции в виде суммы непрерывной справа и непрерывной слева функций ($rl$-представимости). Доказывается предельная теорема для *-интеграла, позволяющая приближать разрывные интегрируемую и интегрирующую функции последовательностями абсолютно непрерывных функций. Доказана новая теорема о $\delta$-корректности решения обыкновенного линейного дифференциального уравнения с обобщенными функциями в коэффициентах, определяемого с помощью квазидифференциального уравнения. Получена формула для вычисления полной вариации неопределенного *-интеграла от $\sigma$-непрерывной функции по функции ограниченной вариации, обобщающая известную формулу для полной вариации абсолютно непрерывной функции. Формула интересна и в случае неопределенного $RS$-интеграла.
-
В данной статье для одного дифференциального уравнения в частных производных высокого четного порядка с оператором Бесселя в прямоугольной области сформулированы две нелокальные начально-граничные задачи. Исследована корректность одной из поставленных задач. При этом применением метода разделения переменных к изучаемой задаче получена спектральная задача для обыкновенного дифференциального уравнения высокого четного порядка. Доказана самосопряженность последней задачи, откуда следует существование системы ее собственных функций, а также ортонормированность и полнота этой системы. Далее, построена функция Грина спектральной задачи, с помощью чего она эквивалентно сведена к интегральному уравнению Фредгольма второго рода с симметричным ядром. С помощью этого интегрального уравнения и теоремы Мерсера исследована равномерная сходимость некоторых билинейных рядов, зависящих от найденных собственных функций. Установлен порядок коэффициентов Фурье. Решение изучаемой задачи выписано в виде суммы ряда Фурье по системе собственных функций спектральной задачи. Доказана равномерная сходимость этого ряда, а также рядов, полученных из него почленным дифференцированием. Методом спектрального анализа доказана единственность решения задачи. Получена оценка для решения задачи, откуда следует его непрерывная зависимость от заданных функций.
-
Об одной задаче корректности минимакса, с. 275-280В теории игр и теории исследования операций часто появляется минимакс от функции $f(x,y)$, зависящей от двух векторных переменных $x$, $y$. Изучению свойств минимакса (или максимина) посвящено много работ. Минимакс можно трактовать как наименьший гарантированный результат для минимизирующего игрока (минимизирующей оперирующей стороны). При изучении минимаксных задач определенный интерес представляют различные вопросы о корректности. Одному из таких вопросов посвящена настоящая статья. В ней векторы $x$, $y$ принадлежат компактам $P$, $Q$ из соответствующих евклидовых пространств $R^k$, $R^l$, а функция $f(x,y)$ непрерывна на произведении пространств $R^k\times R^l$. В статье рассматривается вопрос о зависимости минимакса от малых изменений компактов $P$, $Q$ в метрике Хаусдорфа. Обосновывается непрерывность зависимости минимакса от малых вариаций множеств $P$, $Q$.
-
В рамках данной работы была построена базовая модель химической кинетики, которая использует только физически обоснованные уравнения и параметры. В частности, были преодолены три недостатка классических моделей: удалены все технические параметры, согласована размерность основных уравнений динамики и дано корректное описание термодинамики. При этом основной задачей итоговой модели была автоматизация анализа сложных реакций с разложением их на элементарные стадии. Для достижения этих целей были введены следующие упрощающие положения: постоянство объема реакционной среды, изолированность объема и преобладание жидкого агрегатного состояния.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.