Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'position control with guide':
Найдено статей: 2
  1. Рассматривается задача позиционной поимки группой преследователей одного убегающего при равенстве динамических и инерционных возможностей всех участников. Получены достаточные условия ε-поимки на конечном отрезке времени.

    We study a problem of positional capture of one evader by group of pursuers with equal dynamic and inertial capabilities of the players. Sufficient conditions for ε-capture on a finite interval of time are obtained.

  2. В конечномерном евклидовом пространстве рассматривается задача преследования группой преследователей одного убегающего, описываемая системой вида $$D^{(\alpha)} z_i = a_i z_i + u_i - v,\quad u_i, v \in V,$$ где $D^{(\alpha)}f$ — производная по Капуто порядка $\alpha\in(0,1)$ функции $f$. Множество $V$ допустимых управлений — выпуклый компакт, $a_i$ — неположительные вещественные числа. Целью группы преследователей является поимка убегающего. Терминальные множества — начало координат. Получены достаточные условия поимки одного убегающего в классе квазистратегий. Вводится вспомогательная игра, при помощи которой получены достаточные условия поимки убегающего в классе позиционных стратегий с поводырем.

    In a finite-dimensional Euclidean space, the problem of pursuing one evader by a group of pursuers is considered, described by a system of the form $$D^{(\alpha)} z_i = a_i z_i + u_i - v,\quad u_i, v \in V,$$ where $D^{(\alpha)}f$ is the Caputo derivative of order $\alpha\in(0,1)$ of the function $f$. The set of admissible controls $V$ is a convex compact, $a_i$ are non-positive real numbers. The aim of the group of pursuers is to capture the evader. The terminal sets are the origin of coordinates. Sufficient conditions for catching one evader in the class of quasi-strategies are obtained. Using quasi-strategies in an auxiliary game, sufficient conditions for catching an evader in the class of positional strategies with a guide are obtained.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref