Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
О способах эксплуатации популяции, заданной разностным уравнением со случайными параметрами, с. 211-227Рассматривается модель эксплуатируемой однородной популяции, заданная разностным уравнением, зависящим от случайных параметров. При отсутствии эксплуатации развитие популяции описывается уравнением $$X(k+1)=f\bigl(X(k)\bigr), \quad k=1,2,\ldots,$$ где $X(k)$ — размер популяции или количество биоресурса в момент времени $k,$ $f(x)$ — вещественная дифференцируемая функция, заданная на отрезке $I=[0,a],$ такая, что $f(I)\subseteq I.$ В моменты времени $k=1,2,\ldots$ из популяции извлекается случайная доля ресурса $\omega(k)\in\Omega\subseteq[0,1]$. Процесс сбора может быть остановлен, когда доля собранного ресурса превысит некоторое значение $u(k)\in[0,1)$, чтобы сохранить по возможности большую часть популяции. Тогда доля добываемого ресурса будет равна $\ell(k)=\min (\omega(k),u(k)).$ Средняя временная выгода $H_*$ от извлечения ресурса равна пределу среднего арифметического от количества добываемого ресурса $X(k)\ell(k)$ в моменты времени $1,2,\ldots,k$ при $k\to\infty.$ Решается задача выбора управления процессом промыслового изъятия, при котором значение $H_*$ можно оценить снизу с вероятностью единица по возможности наибольшим числом. Оценки средней временной выгоды существенно зависят от свойств функции $f(x),$ определяющей динамику популяции; данные оценки получены для трех классов уравнений с функциями $f(x),$ обладающими определенными свойствами. Результаты работы проиллюстрированы численными примерами, построенными методом динамического программирования на основании того, что исследуемый процесс эксплуатации популяции является марковским процессом принятия решений.
разностные уравнения, уравнения со случайными параметрами, оптимальная эксплуатация, средняя временная выгодаWe consider a model of an exploited homogeneous population given by a difference equation depending on random parameters. In the absence of exploitation, the development of the population is described by the equation $$X(k+1)=f\bigl(X(k)\bigr), \quad k=1,2,\ldots,$$ where $X(k)$ is the population size or the amount of bioresources at time $k,$ $f(x)$ is a real differentiable function defined on $I=[0,a]$ such that $f(I)\subseteq I.$ At moments $k=1,2,\ldots$, a random fraction of the resource $\omega(k)\in\omega\subseteq[0,1]$ is extracted from the population. The harvesting process can be stopped when the share of the harvested resource exceeds a certain value of $u(k)\in[0,1)$ to keep as much of the population as possible. Then the share of the extracted resource will be equal to $\ell(k)=\min (\omega(k),u(k)).$ The average temporary benefit $H_*$ from the extraction of the resource is equal to the limit of the arithmetic mean from the amount of extracted resource $X(k)\ell(k)$ at moments $1,2,\ldots,k$ when $k\to\infty.$ We solve the problem of choosing the control of the harvesting process, in which the value of $H_*$ can be estimated from below with probability one, as large a number as possible. Estimates of the average time benefit depend on the properties of the function $f(x)$, determining the dynamics of the population; these estimates are obtained for three classes of equations with $f(x)$, having certain properties. The results of the work are illustrated, by numerical examples using dynamic programming based on, that the process of population exploitation is a Markov decision process.
-
Об инвариантных множествах и хаотических решениях разностных уравнений со случайными параметрами, с. 238-247Рассматривается вероятностная модель, заданная разностным уравнением $$x_{n+1}=f(\omega_n,x_n), \quad (\omega_n,x_n)\in \Omega\times [a,b], \quad n=0,1,\dots, \qquad\qquad(1)$$ где $\Omega$ - заданное множество с сигма-алгеброй подмножеств $\widetilde{\mathfrak A},$ на которой определена вероятностная мера $\widetilde \mu;$ $\mu$ - продолжение меры $\widetilde \mu$ на сигма-алгебру, порожденную цилиндрическими множествами. Исследуются инвариантные множества и аттракторы уравнения со случайными параметрами $(1).$ Получены условия, при которых заданное множество является максимальным аттрактором. Показано, что внутри инвариантного множества $A\subseteq [a,b]$ могут существовать решения, хаотические с вероятностью единица. Это происходит в случае, когда существуют $m_i\in\mathbb N$ и множества $\Omega_i\subset\Omega$ такие, что $\mu(\Omega_i)>0,$ $i=1,2,$ и ${\rm cl} \,f^{m_1}(\Omega_1,A)\cap \,{\rm cl} f^{m_2}(\Omega_2,A)=\varnothing.$ Решения, хаотические с вероятностью единица, также наблюдаются в случае, когда уравнение $(1)$ либо не имеет ни одного цикла, либо все циклы отталкивающие с вероятностью единица. Результаты работы проиллюстрированы на примере непрерывно-дискретной вероятностной модели динамики изолированной популяции; для данной модели исследованы различные динамические режимы развития, которые имеют определенные отличия от режимов детерминированных моделей и более полно отображают процессы, происходящие в реальных физических системах.
разностные уравнения со случайными параметрами, притягивающий и отталкивающий циклы, хаотические решения
On the invariant sets and chaotic solutions of difference equations with random parameters, pp. 238-247We consider the probability model defined by the difference equation $$x_{n+1}=f(\omega_n,x_n), \quad (\omega_n,x_n)\in \Omega\times [a,b], \quad n=0,1,\dots, \qquad\qquad (1)$$ where $\Omega$ is a given set with sigma-algebra of subsets $\widetilde{\mathfrak A},$ on which a probability measure $\widetilde \mu$ is defined. Let $\mu $ be a continuation of the measure $\widetilde \mu $ on the sigma-algebra generated by cylindrical sets. We study invariant sets and attractors of the equation with random parameters $(1).$ We receive conditions under which a given set is the maximal attractor. It is shown that, in invariant set $A\subseteq [a,b]$, there can be solutions, which are chaotic with probability one. It is observed in the case when exist an $m_i\in\mathbb N $ and sets $\Omega_i\subset\Omega $ such that $ \mu (\Omega_i)> 0,$ $i=1,2,$ and ${\rm cl}\, f^{m_1}(\Omega_1,A)\cap \,{\rm cl}\, f^{m_2}(\Omega_2,A)=\varnothing.$ It is shown, that solutions, chaotic with probability one, exist also in the case when the equation $(1)$ either has no any cycle, or all cycles are unstable with probability one. The results of the paper are illustrated by the example of a continuous-discrete probabilistic model of the dynamics of an isolated population; for this model we investigate different modes of dynamic development, which have certain differences from the modes of determined models and describe the processes in real physical systems more exhaustively.
-
Данная работа посвящена исследованию инвариантных множеств управляемых систем с импульсными воздействиями, параметризованных метрической динамической системой. Такими системами описываются различные стохастические модели популяционной динамики, экономики, квантовой электроники и механики. Получены условия существования инвариантных множеств для множества достижимости системы и условия асимптотического приближения решений системы к заданному множеству. Результаты работы проиллюстрированы на примерах развития популяции, подверженной промыслу, когда моменты и размеры промысловых заготовок являются случайными величинами. Для данных моделей исследованы различные динамические режимы развития, которые существенно отличаются от режимов детерминированных моделей и более полно отображают процессы, происходящие в реальных экологических системах. Получены условия, при которых размер популяции находится в заданном множестве, и условия асимптотического вырождения популяции с вероятностью единица, также приведены оценки для математического ожидания и дисперсии времени вырождения популяции.
управляемые системы со случайными коэффициентами, динамические системы, инвариантные множества, вероятностные модели популяционной динамикиThis work is devoted to the investigation of invariant sets of control systems with impulse influences that are parameterized by a metric dynamic system. Such systems describe various stochastic models of population dynamics, economy, quantum electronics and mechanics. We obtain the conditions of existence of invariant sets for the attainability set of system as well as conditions of asymptotic approach of system solutions to a given set. The obtained results are illustrated by examples of population dynamics which is subject to crafts, when the moments of trade preparations and the sizes of these preparations are random variables. For given models we investigate various dynamic modes of development which essentially differ from modes of the deterministic models and better display the processes occurring in real ecological systems. Conditions under which the population size is in the given set and conditions of asymptotic extinction of population with probability equal to one are received; estimations for a mathematical expectation and a dispersion of time of population extinction are also obtained.
-
Разработана новая вероятностная модель, которая применяется для описания динамики роста изолированной популяции. Найдены условия асимптотического вырождения с вероятностью единица для популяции, развитие которой задано управляемой системой со случайными коэффициентами, получены также условия существования управления, приводящего популяцию к вырождению. Исследуется динамический режим развития популяции, находящейся на грани исчезновения; это означает, что с вероятностью единица размер данной популяции окажется меньше минимального критического значения, после которого биологическое восстановление популяции невозможно. Результаты работы проиллюстрированы на примере развития двуполой популяции.
вероятностные модели динамики популяции, вероятность вырождения популяции, управляемые системы со случайными коэффициентамиThe new probability model is developed such that it is applied to the description of dynamics of growth for the isolated population. The conditions of asymptotical degeneration with probability one for the population which development is given by control system with random coefficients are found, and the conditions for the existence of the control leading population to degeneration are obtained, too. We study the dynamic mode of the development for the population which is on the verge of disappearance; it means that with probability one the size of such population will be less than the minimum critical value after which the biological restoration of the population is impossible. The results of the work are illustrated on an example of development of bisexual population.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.