Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'programm motion':
Найдено статей: 2
  1. Решена задача о построении асимптотически устойчивых произвольно заданных программных движений уравновешенного гиростата относительно центра масс. Решение получено синтезом активного программного управления, приложенного к системе тел, и стабилизирующего управления по принципу обратной связи. Управление построено в виде точного аналитического решения в классе непрерывных функций. Задача решена на основе прямого метода Ляпунова теории устойчивости с использованием функций Ляпунова со знакопостоянными производными.

    Bezglasnyi S.P., Khudyakova M.A.
    The stabilization of program motions of balanced gyrostat, pp. 31-38

    We consider program motion of balanced gyrostat. We solve the problem of construction asimptotically stability program motion. The program motion can be any function. Control is received in the form the analytical solution. We solve the problem of stabilization by the direct Lyapunov’s method and the method of limiting functions and systems. In this case we can use the Lyapunov’s functions having constant signs derivatives.

  2. Для задачи управления в условиях динамических помех изучается влияние, которое оказывает на оптимальный гарантированный результат сужение класса помех до программных помех. В частности, приводится пример задачи оптимального управления, в которой оптимальный гарантированный результат существенно изменяется при таком сужении множества допустимых помех.

    The control problem under dynamical disturbance is considered. The example of the control system and the terminal type quality index, such that optimal guarantee decrease substantially while narrowing the set of allowed disturbances to the programm ones is given.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref