Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'quantum dot':
Найдено статей: 3
  1. Рассматривается дискретный оператор Шредингера на графе, являющийся гамильтонианом электрона, в приближении сильной связи в системе, состоящей из квантовой проволоки и двух внедренных квантовых точек. Данный оператор описывает двухбарьерную резонансную наноструктуру, причем один из барьеров представляет собой нелокальный потенциал. Описан существенный и абсолютно непрерывный спектр оператора. Изучается задача рассеяния в стационарной постановке для двух возможных направлений распространения частицы. Найдены условия полного отражения и полного прохождения.

    We consider a discrete Schrödinger operator on the graph, which is the Hamiltonian in the tight-binding approach of an electron in the system consisting of a quantum wire, and two embedded quantum dots. This operator describes the double-barrier resonant nanostructure, in which one of the barriers is a non-local potential. The essential and absolutely continuous spectra of this operator are described. We study the scattering problem in the stationary approach for two possible directions of particles propagation. The conditions of total reflection and total transmission are found.

  2. Сопоставляя реальному пространству декартову систему координат (линейное векторное пространство), И. Ньютон рассматривал его как вместилище и не наделял какой-либо внутренней структурой. Такой подход приводит к феноменологическому описанию экспериментально наблюдаемых силовых полей и вынуждает каждому силовому полю сопоставлять источник. Некорректная, однако, весьма эффективная в вопросах статики интерпретация алгебры Клиффорда в виде аналитической геометрии, получившая повсеместное признание благодаря усилиям Хевисайда, не является алгеброй в ее математическом понимании. Следствием этого является, например, отсутствие в классической механике меры (спин), наблюдаемой экспериментально.
    В отличие от такого подхода в работе реальному пространству сопоставляется векторное пространство, обладающее алгеброй Клиффорда, что позволяет вводить меры, связанные с понятиями триада, четыреада, и допускают совместное рассмотрение большого количества трехмерных полей. Объектам реальности, которые обозначаются терминами «заряд», «точечная масса», сопоставляются силовые поля, объясняющие результаты экспериментов, лежавших в основе квантовой механики в прошлом веке. Особенности силовых полей отнесены к особенностям метрики и допускают существование статически устойчивых образований без каких-либо дополнительных постулатов.

    Assigning the Cartesian coordinate system to real space (linear vector space), I. Newton considered it as a container and didn't associate it with any internal structure. Such an approach leads to the phenomenological description of experimentally observed force fields and compels to attribute a source to each force field. Incorrect (but effective in the aspect of static) interpretation of Clifford algebra in the form of analytical geometry which gained universal recognition thanks to Heaviside's efforts is not algebra in its mathematical understanding. A corollary of this fact is, for example, the absence of concept of measure (spin) in classical mechanics that is experimentally observed.
    In contrast to such approach, we assign the vector space having Clifford algebra to real space. This allows us to introduce measures connected with concepts of triad and quadruple and permits a joint consideration of a large number of three-dimensional fields. With objects of reality which are designated by terms of charge and dot mass we associate the force fields explicating the results of experiments that formed the basis of quantum mechanics last century. Features of force fields are referred to as features of a metric and permit existence of statically steady formations without any additional postulates.

  3. В статье рассматривается дискретный оператор Шредингера на графе с вершинами на двух пересекающихся прямых, возмущенный убывающим потенциалом. Данный оператор является гамильтонианом электрона вблизи структуры, образованной квантовой точкой и выходящими из нее четырьмя квантовыми проволоками в приближении сильной связи, широко используемом в настоящее время в физической литературе для изучения подобных наноструктур. Доказаны существование и единственность решения соответствующего уравнения Липпмана–Швингера, для решения получена асимптотическая формула. Изучена нестационарная картина рассеяния. Исследуется задача рассеяния для данного оператора в случае малого потенциала, а также в случае, когда малы как потенциал, так и скорость квантовой частицы. Получены асимптотические формулы для вероятностей распространения частицы во всех возможных направлениях.

    The paper considers the discrete Schrödinger operator on a graph with vertices on two intersecting lines, which is perturbed by a decreasing potential. This operator is the Hamiltonian of an electron near a structure formed by a quantum dot and four outgoing quantum wires in the tight-binding approximation widely used in the physics literature for studying such nanostructures. We have proved the existence and uniqueness of the solution of the corresponding Lippmann-Schwinger equation and obtained the asymptotic formula for it. The non-stationary scattering picture has been studied. The scattering problem for the above operator in the case of a small potential, and also in the case of both a small potential and small velocity of a quantum particle, is investigated. Asymptotic formulas for the probabilities of the particle propagation in all possible directions have been obtained.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref