Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'quasistrategies':
Найдено статей: 3
  1. Для игровой задачи удержания траекторий абстрактной динамической системы в заданном множестве исследуются соотношения метода программных итераций и конструкций, связанных с построением операторно выпуклой оболочки множества посредством предоболочки. В рамках данных соотношений процедура построения упомянутой оболочки реализуется в форме, двойственной по отношению к процедуре на основе метода программных итераций. Решение задачи удержания определяется в классе многозначных квазистратегий (неупреждающих откликов на реализации неопределенных факторов процесса). Показано, что множество успешной разрешимости задачи удержания определяется в виде предела итерационной процедуры на пространстве множеств, элементами которых являются позиции игры, а также установлена структура разрешающих квазистратегий.

    For an abstract dynamic system the game problem of trajectories retention in a given set is considered. The relations of the method of programmed iterations and the constructions associated with the generation of the operator convex hull with the help of prehull are investigated. Within these relations the procedure of constructing the hull is realized in the form dual to the procedure based on the method of programmed iterations. The retention problem solution is determined in the class of multi-valued quasistrategies (nonanticipating responses to the realization of uncertain factors of the process). It is shown that the set of successful solvability of the retention problem is defined as the limit of the iterative procedure in the space of sets, elements of which are positions of the game; the structure of resolving quasistrategies is also provided.

  2. В конечномерном евклидовом пространстве рассматривается задача преследования группой преследователей двух убегающих, описываемая линейной системой с простой матрицей в заданной временно́й шкале. Предполагается, что убегающие используют одно и то же управление. Преследователи действуют согласно квазистратегиям на основе информации о начальных позициях и предыстории управления убегающих. Множество допустимых управлений для каждого из участников представляет собой шар единичного радиуса с центром в начале координат, терминальные множества — начало координат. Целью группы преследователей является поимка двух убегающих. При исследовании в качестве базового используется метод разрешающих функций, позволяющий получить достаточные условия разрешимости задачи сближения за некоторое гарантированное время. В терминах начальных позиций и параметров игры получено достаточное условие поимки убегающих.

    In a finite-dimensional Euclidean space, we consider the problem of pursuit of two evaders by a group of pursuers, described by a linear system with a simple matrix on a given time scale. It is assumed that the evaders use the same control. The pursuers employ quasistrategies based on information about the initial positions and control history of the evaders. The set of admissible controls for each participant is a ball of unit radius centered at the origin, and the terminal sets are the origin. The goal of the group of pursuers is to capture the two evaders. In the study, we use the method of resolving functions as a base one, which allows us to obtain sufficient conditions for the solvability of the approach problem in a certain guaranteed time. In terms of the initial positions and parameters of the game, a sufficient condition for capturing the evaders is obtained.

  3. Рассматривается решение дифференциальной игры сближения-уклонения с использованием метода программных итераций. Основная цель состоит в построении множества позиционного поглощения, соответствующего разбиению пространства позиций игры, отвечающему фундаментальной теореме об альтернативе Н.Н. Красовского, А.И. Субботина. Для построения используется оператор программного поглощения, определяемый целевым множеством в задаче о сближении. Множество, формирующее фазовые ограничения, поэтапно преобразуется упомянутым оператором, реализуя последовательность, предел которой совпадает с множеством позиционного поглощения. Предполагается, что целевое множество замкнуто, а множество, определяющее фазовые ограничения исходной задачи, имеет замкнутые сечения, каждое из которых соответствует фиксации момента времени. Установлены свойства, имеющие смысл односторонней непрерывности множества позиционного поглощения при изменении множеств, определяющих исходную дифференциальную игру. Показано, что предел итерационной процедуры совпадает с множеством успешной разрешимости в классе многозначных обобщенных квазистратегий.

    The solution of a differential game of guidance-evasion on the basis of the programmed iterations method is considered. The basic goal consists in the construction of a set of positional absorption corresponding to alternative partition following from the fundamental alternative theorem of N.N. Krasovskii and A.I. Subbotin. For construction, an operator of programmed absorption defined by the target set in a guidance problem is used. The set defining phase constraints is gradually transformed by the above-mentioned operator; therefore, the sequence for which the corresponding limit coincides with the set of positional absorption is realized. It is assumed that the target set is closed and the set defining phase constraints of initial problem has closed sections corresponding to fixation of time. Properties having the sense of one-sided continuity of the positional absorption set under variation of sets defining initial differential game are established. It is shown that the limit of iterated procedure coincides with the set of successful solvability in a class of set-valued generalized quasistrategies.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref