Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
publication_info">
О рациональных приближениях функций и выборе собственных значений в алгоритме Вернера, с. 297-305Работа посвящена изучению наилучших равномерных рациональных приближений (НРРП) непрерывных функций на компактных, в том числе конечных, подмножествах числовой оси $\mathbb{R}$. Показано, что НРРП на конечном множестве существует не всегда. Более подробно изучен алгоритм Гельмута Вернера поиска НРРП вида $P_m/Q_n = \sum\limits_{i=0}^m a_i x^i \big/ \sum\limits_{j=0}^n b_j x^j$ для функций на множестве из $N=m+n+2$ точек $x_1<\ldots<x_N$. Этот алгоритм может использоваться в алгоритме Ремеза поиска НРРП на отрезке. При работе алгоритма Вернера вычисляется $(n+1)$ вещественное собственное значение $h_1,\ldots,h_{n+1}$ для пучка матриц $A-hB$, где $A$ и $B$ - некоторые симметричные матрицы. Каждому собственному значению сопоставляется своя рациональная дробь вида $P_m/Q_n$, являющаяся кандидатом на наилучшее приближение. Поскольку не более одной из этих дробей свободны от полюсов на отрезке $[x_1, x_N]$, то возникает задача отыскания того собственного значения, которому соответствует рациональная дробь без полюсов. В работе показано, что если $m=0$, все значения $f(x_1),-f(x_2),\ldots,(-1)^{n+2} f(x_{n+2})$ различны и НРРП положительно (отрицательно) во всех точках $x_1,\ldots,x_{n+2}$, то это собственное значение занимает $[(n+2)/2]$-е ($[(n+3)/2]$-е) место по величине. Приведены три численных примера, иллюстрирующих это утверждение.
наилучшие равномерные рациональные приближения, рациональные приближения на конечных множествах, алгоритм Ремеза, алгоритм Вернера, выбор собственных значений в алгоритме Вернераpublication_info">
On rational approximations of functions and eigenvalue selection in Werner algorithm, pp. 297-305The paper deals with the best uniform rational approximations (BURA) of continuous functions on compact (and even finite) subsets of real axis $\mathbb{R}$.The authors show that BURA does not always exist. They study the algorithm of Helmut Werner in more detail. This algorithm serves to search for BURA of the type $P_m/Q_n = \sum\limits_{i=0}^m a_i x^i \big/ \sum\limits_{j=0}^n b_j x^j$ for functions on a set of $N=m+n+2$ points $x_1<\ldots<x_N$. It can be used within the Remez algorithm of searching for BURA on a segment. The Verner algorithm calculates $(n+1)$ real eigenvalues $h_1,\ldots,h_{n+1}$ for the matrix pencil $A-hB$, where $A$ and $B$ are some symmetric matrices. Each eigenvalue generates a rational fraction of the type $P_m/Q_n$ which is a candidate for the best approximation. It is known that at most one of these fractions is free from poles on the segment $[x_1, x_N]$, so the following problem arises: how to determine the eigenvalue which generates the rational fraction without poles? It is shown that if $m=0$ and all values $f(x_1),-f(x_2),\ldots,(-1)^{n+2} f(x_{n+2})$ are different and the approximating function is positive (negative) at all points $x_1,\ldots,x_{n+2}$, then this eigenvalue ranks $[(n+2)/2]$-th ($[(n+3)/2]$-th) in value. Three numerical examples illustrate this statement.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.