Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Рассматривается задача уклонения убегающего от группы преследователей в конечномерном евклидовом пространстве. Движение описывается линейной системой дробного порядка вида $$\left({}^C D^{\alpha}_{0+}z_i\right)=A z_i+u_i-v,$$ где ${}^C D^{\alpha}_{0+}f$ - производная по Капуто порядка $\alpha\in(0,1)$ функции $f$, $A$ - простая матрица. В начальный момент времени заданы начальные условия. Управления игроков ограничены одним и тем же выпуклым компактом. Убегающий дополнительно стеснен фазовыми ограничениями - выпуклым многогранным множеством c непустой внутренностью. В терминах начальных позиций и параметров игры получены достаточные условия разрешимости задачи уклонения.
Evasion from pursuers in a problem of group pursuit with fractional derivatives and phase constraints, pp. 309-314The paper deals with the problem of avoiding a group of pursuers in the finite-dimensional Euclidean space. The motion is described by the linear system of fractional order $$\left({}^C D^{\alpha}_{0+}z_i\right)=A z_i+u_i-v,$$ where ${}^C D^{\alpha}_{0+}f$ is the Caputo derivative of order $\alpha\in(0,1)$ of the function $f$ and $A$ is a simple matrix. The initial positions are given at the initial time. The set of admissible controls of all players is a convex compact. It is further assumed that the evader does not leave the convex polyhedron with nonempty interior. In terms of the initial positions and the parameters of the game, sufficient conditions for the solvability of the evasion problem are obtained.
-
По теореме Хьюитта–Марчевского–Пондишери тихоновское произведение $2^\omega$ сепарабельных пространств сепарабельно. Мы продолжаем исследовать проблему существования в тихоновском произведении $\prod\limits_{\alpha\in 2^\omega}X_\alpha$ сепарабельных пространств плотного счетного подмножества, не содержащего нетривиальных сходящихся последовательностей. Мы говорим, что последовательность $\lambda=\{x_n\colon n\in\omega\}$ является простой, если для каждого $x_n\in\lambda$ множество $\{n'\in\omega\colon x_{n'}=x_n\}$ конечно. Мы доказываем, что в произведении $\{Z_\alpha\colon\alpha\in 2^\omega\}$ сепарабельных пространств, где всякое $Z_\alpha$ $(\alpha\in\omega)$ содержит простую несходящуюся последовательность, есть счетное плотное множество $Q\subseteq\prod\limits_{\alpha\in 2^\omega}Z_\alpha$, которое не содержит нетривиальных сходящихся в $\prod\limits_{\alpha\in 2^\omega}Z_\alpha$ последовательностей.
Products of spaces and the convergence of sequences, pp. 563-570By the Hewitt–Marczewski–Pondiczery theorem, the Tychonoff product of $2^\omega$ separable spaces is separable. We continue to explore the problem of the existence in the Tychonoff product $\prod\limits_{\alpha\in 2^\omega}Z_\alpha$ of $2^\omega$ separable spaces a dense countable subset, which does not contain non-trivial convergent sequences. We say that a sequence $\lambda=\{x_n\colon n\in\omega\}$ is simple, if, for every $x_n\in\lambda$, a set $\{n'\in\omega\colon x_{n'}=x_n\}$ is finite. We prove that in the product of separable spaces $\prod\limits_{\alpha\in 2^\omega}Z_\alpha$, such that $Z_\alpha$ $(\alpha\in 2^\omega)$ contains a simple nonconvergent sequence, there is a countable dense set $Q\subseteq\prod\limits_{\alpha\in 2^\omega}Z_\alpha$, which does not contain non-trivial convergent in $\prod\limits_{\alpha\in 2^\omega}Z_\alpha$ sequences.
-
Поимка двух скоординированных убегающих в линейной задаче преследования во временных шкалах, с. 397-409В конечномерном евклидовом пространстве рассматривается задача преследования группой преследователей двух убегающих, описываемая линейной системой с простой матрицей в заданной временно́й шкале. Предполагается, что убегающие используют одно и то же управление. Преследователи действуют согласно квазистратегиям на основе информации о начальных позициях и предыстории управления убегающих. Множество допустимых управлений для каждого из участников представляет собой шар единичного радиуса с центром в начале координат, терминальные множества — начало координат. Целью группы преследователей является поимка двух убегающих. При исследовании в качестве базового используется метод разрешающих функций, позволяющий получить достаточные условия разрешимости задачи сближения за некоторое гарантированное время. В терминах начальных позиций и параметров игры получено достаточное условие поимки убегающих.
In a finite-dimensional Euclidean space, we consider the problem of pursuit of two evaders by a group of pursuers, described by a linear system with a simple matrix on a given time scale. It is assumed that the evaders use the same control. The pursuers employ quasistrategies based on information about the initial positions and control history of the evaders. The set of admissible controls for each participant is a ball of unit radius centered at the origin, and the terminal sets are the origin. The goal of the group of pursuers is to capture the two evaders. In the study, we use the method of resolving functions as a base one, which allows us to obtain sufficient conditions for the solvability of the approach problem in a certain guaranteed time. In terms of the initial positions and parameters of the game, a sufficient condition for capturing the evaders is obtained.
-
О линейном алгоритме численного решения краевой задачи для простейшего волнового уравнения, с. 126-144Решение краевой задачи для простейшего волнового уравнения, заданной в прямоугольнике, допускает представление в виде суммы двух слагаемых. Они являются решениями двух краевых задач: в первом случае граничные функции постоянны, а во втором начальные функции имеют специальный вид. Подобная декомпозиция позволяет применять для численного решения обеих задач двумерные сплайны. Первая задача исследована ранее, получен экономичный алгоритм ее численного решения.
Для решения второй задачи определено конечномерное пространство сплайнов лагранжевого типа, а в качестве решения предложен оптимальный сплайн, дающий наименьшую невязку. Для коэффициентов этого сплайна и для его невязки получены точные формулы. Формула для коэффициентов сплайна представляет собой линейную форму от исходных конечных разностей, заданных на границе.
Формула для невязки представляет собой сумму двух простых слагаемых и двух положительно определенных квадратичных форм от новых конечных разностей, заданных на границе. Элементы матриц форм выражаются через многочлены Чебышёва, обе матрицы обратимы и таковы, что обратные к ним матрицы имеют трехдиагональный вид. Эта особенность позволяет получить для спектра матриц верхние и нижние оценки и показать, что невязка стремится к нулю с ростом размерности численной задачи. Данное обстоятельство обеспечивает корректность предлагаемого алгоритма численного решения второй задачи, обладающего линейной сложностью вычислений.волновое уравнение, интерполяция, аппроксимирующий сплайн, трехдиагональная матрица, многочлены Чебышёва
On the linear algorithm of numerical solution of a boundary value problem for a simple wave equation, pp. 126-144The solution of a boundary value problem for a simple wave equation defined on a rectangle can be represented as a sum of two terms. They are solutions of two boundary value problems: in the first case, the boundary functions are constant, while in the second the initial functions have a special form. Such decomposition allows to apply two-dimensional splines for the numerical solution of both problems. The first problem was studied previously, and an economical algorithm of its numerical solution was developed.
To solve the second problem we define a finite-dimensional space of splines of Lagrangian type, and recommend an optimal spline giving the smallest residual as a solution. We obtain exact formulas for the coefficients of this spline and its residual. The formula for the coefficients of this spline is a linear form of initial finite differences defined on the boundary.
The formula for the residual is a sum of two simple terms and two positive definite quadratic forms of new finite differences defined on the boundary. Elements of matrices of forms are expressed through Chebyshev polynomials, both matrices are invertible and have the property that their inverses matrices are of tridiagonal form. This feature allows us to obtain upper and lower bounds for the spectrum of matrices, and to show that the residual tends to zero when the numerical problem dimension increases. This fact ensures the correctness of the proposed algorithm of numerical solution of the second problem which has linear computational complexity.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.