Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Рассматривается линейная задача преследования группой преследователей двух убегающих при равных динамических возможностях всех участников и с фазовыми ограничениями на состояния убегающих в предположении, что убегающие используют одно и то же управление. Движение каждого участника имеет вид $\dot z+a(t)z=w.$ Геометрические ограничения на управления - строго выпуклый компакт с гладкой границей, терминальные множества - начало координат. Предполагается, что убегающие в процессе игры не покидают пределы выпуклого конуса. Целью преследователей является поимка двух убегающих, цель группы убегающих противоположна. Говорят, что в задаче преследования происходит поимка, если существуют два преследователя, из заданной группы преследователей, которые ловят убегающих, при этом моменты поимки могут не совпадать. В терминах начальных позиций получены достаточные условия поимки двух убегающих. Приведены примеры, иллюстрирующие полученные результаты.
On the capture of two evaders in a non-stationary pursuit-evasion problem with phase restrictions, pp. 12-20We consider a linear problem of pursuing two evaders by a group of persecutors in case of equal dynamic opportunities of all participants and under phase restrictions imposed on the states of evaders. We assume that the evaders use the same control. The movement of each participant has the form $ \dot z + a (t) z = w. $ Geometric constraints on the control are strictly convex compact set with smooth boundary, and terminal sets are the origin of coordinates. It is assumed that the evaders do not leave the convex cone. The aim of a group of pursuers is to capture two evaders; the aim of a group of evaders is opposite. We say that a capture holds in the problem of pursuing two evaders if among the specified number of pursuers there are two of them who catch the evaders, possibly at different times. We obtain sufficient conditions for capturing two evaders in terms of initial positions. The results obtained are illustrated by examples.
-
Представлены результаты исследования работоспособности следящего пневмопривода руки робота с опорной моделью в контуре управления для компенсации взаимовлияния движений различных степеней подвижности, которые могут проявляться в виде силовых и параметрических возмущений, искажающих заданный закон движения. Проведены математическое моделирование следящего пневмопривода линейного перемещения руки робота, работающего в цилиндрической системе координат, а также натурные испытания привода с предложенной системой управления. Полученные результаты показывают удовлетворительное совпадение расчетных и экспериментальных данных и возможность частичной компенсации влияния силовых возмущений на заданный закон движения привода.
Servopneumatic actuator of a robot with compensation for the mutual influence of movements of the degrees of mobility, pp. 231-239This paper presents the results of investigation of the working capacity of a servopneumatic actuator with a reference model in the control system. This control scheme is used to compensate for the mutual influence of movements of various degrees of mobility in industrial robots in the form of force and parametric perturbations. Mathematical modeling and a full-scale test of the servopneumatic actuator with a reference model in the control system are carried out. The mathematical model contains thermodynamical pressure and temperature differential equations of compressed air state in pneumatic cylinder chambers; logical relationships determining the conditions for connection of the chambers with a feed line or atmosphere; equations describing the dynamics of the servovalve; equations of mechanical force balance on the cylinder shaft and relationships describing the control system. The results obtained show a satisfactory agreement between the calculated and experimental data and the possibility of partial compensation for the influence of the force perturbations on the motion of the servopneumatic actuator. Based on the linearized mathematical model, the smoothing coefficient was calculated with respect to external force disturbances. The control system with a reference model in the control loop makes it possible to increase the noise immunity by 23 % in comparison with the conventional control system.
-
В работе рассматривается задача программного управления движением динамически несимметричного уравновешенного шара на плоскости при помощи трех двигателей-маховиков при условии, что шар катится без проскальзывания. Центр масс механической системы совпадает с геометрическим центром шара. Найдены законы управления, обеспечивающие движение шара вдоль базовых траекторий (прямой и окружности), а также по произвольно заданной кусочно-гладкой траектории на плоскости. В данной работе предлагается кватернионная модель движения шара, которая позволяет обойтись без традиционного использования тригонометрических функций, а кинематические уравнения записать в виде линейных дифференциальных уравнений, исключающих недостатки связанные с применением углов Эйлера. Решение поставленной задачи осуществляется с применением кватернионной функции времени, которая определяется видом траектории и законом движения точки контакта шара с плоскостью. Приведен пример управления движением шара и выполнена визуализация движения системы шар-маховики в пакете компьютерной алгебры.
кватернионы, программное управление, неголономная связь, геометрическая динамика, плавное движение, сферо-роботThis paper deals with the problem of program control of the motion of a dynamically asymmetric balanced ball on the plane using three flywheel motors, provided that the ball rolls without slipping. The center of mass of the mechanical system coincides with the geometric center of the ball. Control laws are found to ensure the motion of the ball along the basic trajectories (line and circle), as well as along an arbitrarily given piecewise smooth trajectory on the plane. In this paper, we propose a quaternion model of ball motion. The model does not require using the traditional trigonometric functions. Kinematic equations are written in the form of linear differential equations eliminating the disadvantages associated with the use of Euler angles. The solution of the problem is carried out using the quaternion function of time, which is determined by the type of trajectory and the law of motion of the point of contact of the ball with the plane. An example of ball motion control is given and a visualization of the ball-flywheel system motion in a computer algebra package is presented.
-
Рассмотрена задача оптимального управления движением космического аппарата при коррекции его положения в инерциальной системе координат за счет управляющих моментов, получаемых от ускорений инерционных маховиков бесплатформенной инерциальной навигационной системы. Полученное оптимальное управление обеспечивает плавное изменение ориентации космического аппарата, которое рассматривается как движение по кратчайшей траектории в конфигурационном пространстве специальной ортогональной группы $SO(3)$. Алгоритм управления реализуется с использованием оригинальной процедуры нелинейной сферической интерполяции кватернионов. Основными исполнительными органами ориентации динамического контура управления бесплатформенной инерциальной навигационной системой при решении задачи оптимального управления были выбраны четыре инерционных маховика (три - по осям космического аппарата, четвертый - по биссектрисе). Результаты моделирования верифицируются путем создания анимации корректирующего движения космического аппарата.
космические аппараты, бесплатформенные инерциальные навигационные системы, управляющие моменты, плавное движение
Optimal stabilization of spacecraft in an inertial coordinate system based on a strapdown inertial navigation system, pp. 252-259We consider the optimal control problem for spacecraft motion during correction of its position in an inertial coordinate system by means of control torques. Control torques arise from the acceleration of inertial flywheels of a strapdown inertial navigation system. We investigate optimal control, which ensures a smooth change in the spacecraft orientation. This smooth corrective motion is described as the motion along the shortest path in the configuration space of a special orthogonal group $SO(3)$. The shortest path coincides with the large circle arc of the unit hypersphere $S^3$. We also consider a control algorithm using the original procedure of nonlinear spherical interpolation of quaternions. Four inertial flywheels are used as the main executive bodies for orientation of the dynamic control loop of the strapdown inertial navigation system when solving the optimal control problem. Three flywheels are oriented along the axes of the spacecraft. The fourth flywheel is oriented along the bisector. The simulation results are presented. We consider examples for corrective motion in which the spacecraft has zero velocity and acceleration at the beginning and end of the maneuver. We give an animation of the corrective movement of the spacecraft. The proposed formalism can be extended to control the spacecraft motion at an initial angular velocity different from zero, as well as in the orbital coordinate system.
-
Многие задачи управления движением и навигации, робототехники и компьютерной графики связаны с описанием вращения твердого тела в трехмерном пространстве. Для решения подобных задач дается конструктивное решение задачи о плавном перемещении твердого тела в пространстве ориентаций по кратчайшей траектории, проходящей через точки пространства, равномерно его заполняющие. Сферическому движению твердого тела ставится в соответствие движение точки по гиперсфере в четырехмерном пространстве по дугам большого радиуса, соединяющим вершины одного из правильных центросимметричных четырехмерных многогранников. Плавное движение обеспечивается выбором специальной нелинейной функции при интерполяции кватернионов, задающих положения вершин правильных многогранников. Для аналитического представления закона непрерывного движения используется оригинальное алгебраическое представление функции Хевисайда через линейную, квадратичную и иррациональную функции. Алгоритм плавного движения твердого тела через узлы однородной решетки на группе $SO(3)$ иллюстрируется анимацией, выполненной в компьютерной программе MathCad. Предложенный метод позволяет в широких пределах менять временные интервалы межузельных перемещений, а также законы движения на этих интервалах.
дискретное распределение на $SO(3)$, кратчайшие траектории, четырехмерные многогранники, интерполяция кватернионов, функция ХевисайдаMany tasks of motion control and navigation, robotics and computer graphics are related to the description of a rigid body rotation in three-dimensional space. We give a constructive solution for the smooth movement of a rigid body to solve such problems. The smooth movement in orientational space is along the shortest path. Spherical solid body motion is associated with the movement of the point on the hypersphere in four-dimensional space along the arcs of large radius through the vertices of regular four-dimensional polytope. Smooth motion is provided by the choice of a special nonlinear function of quaternion interpolation. For an analytical presentation of the law of continuous movement, we use the original algebraic representation of the Heaviside function. The Heaviside function is represented using linear, quadratic and irrational functions. The animations in the computer program MathCad illustrate smooth motion of a rigid body through the nodes of a homogeneous lattice on the group $SO(3)$. The algorithm allows one to change in a wide range the time intervals displacements between nodes, as well as the laws of motion on these intervals.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.