Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'spherical gyrostat':
Найдено статей: 1
  1. Рассмотрена задача о движении гиростата, имеющего неподвижную точку, с переменным гиростатическим моментом под действием силы тяжести. Предложен новый метод интегрирования уравнений движения системы, состоящей из тела-носителя и трех роторов, которые вращаются вокруг главных осей. Его можно отнести к методу вариации постоянной в функции для гиростатического момента, который линейно зависит от вектора вертикали. При постоянном множителе гиростатический момент удовлетворяет уравнению Пуассона, а вариация его находится из интеграла площадей. Выполнена редукция исходных уравнений к системе пятого порядка. Получены новые решения данных уравнений в случае сферического распределения масс гиростата и для прецессионных движений тела-носителя. Установлен явный вид гиростатического момента для случая трех инвариантных соотношений.

    The problem of the motion of a gyrostat with a fixed point and a variable gyrostatic moment under the action of gravity force is considered. A new method for integrating the equations of motion of a system consisting of a carrier body and three rotors that rotate around the main axes is proposed. The method can be attributed to the method of variation of the constant in the function for the gyrostatic moment, which linearly depends on the vector of vertical. In case of a constant multiplier, the gyrostatic moment satisfies the Poisson equation, and its variation is found from the integral of areas. The original equations have been reduced to a fifth-order system. New solutions of these equations are obtained in the case of a spherical mass distribution for the gyrostat and for the precessional motions of a carrier body. An explicit form of the gyrostatic moment is established for the case of three invariant relations.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref