Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Решена задача о построении асимптотически устойчивых произвольно заданных программных движений уравновешенного гиростата относительно центра масс. Решение получено синтезом активного программного управления, приложенного к системе тел, и стабилизирующего управления по принципу обратной связи. Управление построено в виде точного аналитического решения в классе непрерывных функций. Задача решена на основе прямого метода Ляпунова теории устойчивости с использованием функций Ляпунова со знакопостоянными производными.
уравновешенный гиростат, соосные тела, программное движение, знакопостоянная функция, функция ЛяпуноваWe consider program motion of balanced gyrostat. We solve the problem of construction asimptotically stability program motion. The program motion can be any function. Control is received in the form the analytical solution. We solve the problem of stabilization by the direct Lyapunov’s method and the method of limiting functions and systems. In this case we can use the Lyapunov’s functions having constant signs derivatives.
-
Представлена полная аналитическая классификация атомов гиростата Ковалевской–Яхья, возникающих в критических точках ранга 1. Найдены все разделяющие значения гиростатического момента при классификации диаграмм Смейла–Фоменко. Разработан "конструктор" графов Фоменко, применение которого дало полное описание грубой топологии этого интегрируемого случая. Доказано, что имеется девять групп эквивалентных молекул (без меток), содержащих 22 устойчивых графа и 6 неустойчивых по отношению к количеству критических окружностей на критических уровнях.
We present the complete analytical classification of the atoms arising at the critical points of rank 1 of the Kowalevski–Yehia gyrostat. To classify the Smale–Fomenko diagrams, all separating values of the gyrostatic momentum are found. We present a kind of constructor of the Fomenko graphs; its application gives the complete description of the rough topology of this integrable case. It is proved that there exists exactly nine groups of identical molecules (not considering the marks). These groups contain 22 stable types of graphs and 6 unstable ones with respect to the number of critical circles on the critical levels.
-
В статье рассмотрена редукция уравнений Кирхгофа-Пуассона задачи о движении твердого тела под действием потенциальных и гироскопических сил и уравнений задачи о движении твердого тела в магнитном поле с учетом эффекта Барнетта-Лондона. Получены аналоги уравнений Н. Ковалевского в указанных задачах. Построены два новых частных решения полиномиального класса Стеклова-Ковалевского-Горячева редуцированных дифференциальных уравнений рассматриваемых задач. Полиномиальное решение задачи о движении гиростата под действием потенциальных и гироскопических сил характеризуется свойством: квадраты второй и третьей компонент вектора угловой скорости представлены квадратными многочленами от первой компоненты этого вектора, которая является эллиптической функцией времени. Полиномиальное решение уравнений движения твердого тела в магнитном поле с учетом эффекта Барнетта-Лондона характеризуется тем, что квадрат второй компоненты вектора угловой скорости - многочлен второго порядка, а квадрат третьей компоненты - многочлен четвертого порядка от первой компоненты этого вектора, которая находится в результате обращения гиперэллиптического интеграла.
уравнения Кирхгофа-Пуассона, уравнения Эйлера-Пуассона, уравнения Н. Ковалевского, полиномиальные решения, эффект Барнетта-ЛондонаIn this paper we consider the reduction of Kirchhoff-Poisson equations related to the problem of rigid body motion under the action of potential and gyroscopic forces and also equations of the problem of rigid body motion taking into account the Barnett-London effect. For the above-mentioned problems, we obtain analogues of N. Kovalevski equations. In addition, for the above-mentioned problems we obtain two new particular solutions to the polynomial class of Steklov-Kovalevski-Goryachev reduced differential equations. The polynomial solution of the problem of gyrostat motion under the action of potential and gyroscopic forces is characterized by the following property: the squares of the second and the third vector component of angular velocity are quadratic polynomials of the first vector component that is an elliptic function of time. A polynomial solution of the equation of rigid body motion in a magnetic field (taking into account the Barnett-London effect) is characterized by the fact that the square of the second vector component of the angular velocity is the second-degree polynomial, while the square of the third component is the fourth-degree polynomial of the first vector component. The former is found as a result of an elliptic integral inversion.
-
Об одном подходе в исследовании движения гиростата с переменным гиростатическим моментом, с. 102-115Рассмотрена задача о движении гиростата, имеющего неподвижную точку, с переменным гиростатическим моментом под действием силы тяжести. Предложен новый метод интегрирования уравнений движения системы, состоящей из тела-носителя и трех роторов, которые вращаются вокруг главных осей. Его можно отнести к методу вариации постоянной в функции для гиростатического момента, который линейно зависит от вектора вертикали. При постоянном множителе гиростатический момент удовлетворяет уравнению Пуассона, а вариация его находится из интеграла площадей. Выполнена редукция исходных уравнений к системе пятого порядка. Получены новые решения данных уравнений в случае сферического распределения масс гиростата и для прецессионных движений тела-носителя. Установлен явный вид гиростатического момента для случая трех инвариантных соотношений.
The problem of the motion of a gyrostat with a fixed point and a variable gyrostatic moment under the action of gravity force is considered. A new method for integrating the equations of motion of a system consisting of a carrier body and three rotors that rotate around the main axes is proposed. The method can be attributed to the method of variation of the constant in the function for the gyrostatic moment, which linearly depends on the vector of vertical. In case of a constant multiplier, the gyrostatic moment satisfies the Poisson equation, and its variation is found from the integral of areas. The original equations have been reduced to a fifth-order system. New solutions of these equations are obtained in the case of a spherical mass distribution for the gyrostat and for the precessional motions of a carrier body. An explicit form of the gyrostatic moment is established for the case of three invariant relations.
-
Интегрируемый случай вращательного движения гиростата в гравитационном и магнитном полях Земли, с. 89-96Рассматривается твердое тело-гиростат, движущееся по круговой кеплеровой околоземной орбите в плоскости геомагнитного экватора. Предполагается, что тело снабжено маховиком, обладает электростатическим зарядом и собственным магнитным моментом. Изучается вращательное движение гиростата относительно его центра масс под действием лоренцева и магнитного моментов. Показано, что при определенных предположениях о наличии некоторой динамической и электромагнитной симметрии гиростата решение задачи сводится к квадратурам путем построения четырех первых интегралов. Проведено исследование движения оси симметрии гиростата и дана его геометрическая интерпретация.
The integrable case in the gyrostat attitude motion in the gravitational and magnetic Earth's fields, pp. 89-96The paper deal with a rigid body bearing a gyro, possessing an eigen magnetic moment and equipped with charged shield. Its orbit is near-Earth circle Keplerian orbit in geomagnetic equator plane. The attitude motion of the gyrostat is investigated. It is shown that four first integrals can be constructed under some conditions and therefore the solution of the problem may be reduced to the quadratures. The geometric interpretation of the gyrostat's attitude motion is given.
-
В статье исследованы условия существования двух новых классов полиномиальных решений дифференциальных уравнений задачи о движении гиростата с неподвижной точкой в магнитном поле с учетом эффекта Барнетта–Лондона. Общая особенность структуры этих классов заключается в том, что функции, задающие инвариантные соотношения для компонент единичного вектора оси симметрии действующих силовых полей, являются либо рациональными функциями от первой компоненты указанного вектора, либо от вспомогательной переменной. Построены три новых частных решения рассматриваемых полиномиальных классов. Эти решения описываются функциями, полученными обращением гиперэллиптических интегралов. Доказано, что еще одно построенное решение исследуемых полиномиальных структур, для которого движение гиростата обладает свойством прецессионности, является частным случаем известного решения.
уравнения Кирхгофа–Пуассона, эффект Барнетта–Лондона, гиростат, полиномиальное решение, инвариантное соотношениеThe paper studies the existence of two new classes of polynomial solutions to differential equations related to the problem of the gyrostat motion with a fixed point in the magnetic field, taking into account the Barnett–London effect. A common feature of the structure of these classes is that the functions that set the invariance relations for the unit vector components of the symmetry axis of the active force fields are either rational functions of the first component of the specified vector or of the auxiliary variable. Three new particular solutions to the polynomial classes under consideration are constructed. These solutions are described by the functions obtained by the inversion of hyperelliptic integrals. It has been proved that another constructed solution of the polynomial structures under study, for which the movement of the gyrostat has the property of precession, is a particular case of a known solution.
-
Рассмотрена динамика системы, описывающей управляемое движение неуравновешнного кругового профиля в присутствии точечных вихрей. Управление движением профиля реализуется за счет периодического изменения положения центра масс, гиростатического момента и момента инерции системы. Предложен вывод уравнений движения на основе подхода Седова, уравнения движения представлены в гамильтоновой форме. Рассмотрено периодическое возмущение известного интегрируемого случая.
движение в идеальной жидкости, точечные вихри, периодическое возмущение, взаимодействие вихрей с телом
Periodic perturbation of motion of an unbalanced circular foil in the presence of point vortices in an ideal fluid, pp. 630-643The dynamics of a system governing the controlled motion of an unbalanced circular foil in the presence of point vortices is considered. The foil motion is controlled by periodically changing the position of the center of mass, the gyrostatic momentum, and the moment of inertia of the system. A derivation of the equations of motion based on Sedov's approach is proposed, the equations of motion are presented in the Hamiltonian form. A periodic perturbation of the known integrable case is considered.
-
Рассматривается интегрируемый случай Ковалевской–Яхья в динамике гиростата. Представлен новый подход к классификации бифуркационных диаграмм приведенных систем. Получены конструктивно проверяемые условия существования критических движений на сечении фиксированной постоянной площадей поверхностей, несущих бифуркационную диаграмму трех интегралов полной исходной системы. Случаи, когда эти условия претерпевают качественные перестройки, дают аналитические зависимости между постоянной площадей и величиной гиростатического момента, формирующие разделяющее множество в плоскости двух параметров семейства диаграмм приведенных систем. В результате создана компьютерная система, удовлетворяющая введенному понятию электронного атласа.
The integrable case of Kowalevski–Yehia in the dynamics of a gyrostat is considered. We present a new approach to classifying the bifurcation diagrams of reduced systems. We find efficiently checked existence conditions for the critical motions on the area integral constant sections of the surfaces bearing the 3-diagram of the complete system. The cases where these conditions qualitatively change give the analytical expressions of the dependencies between the area constant and the gyrostatic momentum forming the classifying set for the two-parametric family of the reduced systems’ diagrams. Finally, we present a computer system, which satisfies the given definition of the electronic atlas.
-
Работа посвящена экспериментальному исследованию влияния трения качения на динамику робота-колеса. Робот приводится в движение за счет изменения собственного гиростатического момента с помощью управляемого вращения установленного на нем ротора. Задача рассматривается в предположении, что центр масс системы не совпадает с ее геометрическим центром. В работе получены уравнения, описывающие динамику рассматриваемой системы, и приведен пример управляемого движения колеса при задании постоянного углового ускорения ротора. Приведено описание конструкции робота-колеса и предложена методика экспериментального определения коэффициента трения качения. Для проверки предложенной математической модели проведены экспериментальные исследования управляемого движения робота-колеса. В работе показано, что теоретические и экспериментальные результаты качественно совпадают, но имеют количественное отличие.
This paper presents an experimental investigation of the influence of rolling friction on the dynamics of a robot wheel. The robot is set in motion by changing the proper gyrostatic momentum using the controlled rotation of a rotor installed in the robot. The problem is considered under the assumption that the center of mass of the system does not coincide with its geometric center. In this paper we derive equations describing the dynamics of the system and give an example of the controlled motion of a wheel by specifying a constant angular acceleration of the rotor. A description of the design of the robot wheel is given and a method for experimentally determining the rolling friction coefficient is proposed. For the verification of the proposed mathematical model, experimental studies of the controlled motion of the robot wheel are carried out. We show that the theoretical results qualitatively agree with the experimental ones, but are quantitatively different.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.