Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Численное решение задачи Бока, с. 59-64Численно исследуются орбиты звезд скопления, обращающегося в плоскости Галактики по круговой орбите (задача Бока). В качестве модели потенциала скопления используется модель Шустера–Пламмера. Рассматривается влияние начальных условий на характер финальных движений, в частности на возможность вылета звезды из скопления. Произведен массовый расчет орбит звезд для различных начальных значений энергии и момента импульса относительно скопления. Оценены вероятности вылета звезды из скопления.
динамика звездных систем, звездные скопления, задача Бока, численное интегрирование, диаграмма Линдблада
Numerical solving Bok’s problem, pp. 59-64We numerically investigate the orbits of star cluster moving in the plane of the Galaxy in a circular orbit (Bok’s problem). Shuster–Plummer model is used as a model of the potential of the cluster. We examine the impact of initial conditions on the star movements, in particular on the star opportunity to fly out of the cluster. The mass calculation of star orbits for various initial values of energy and momentum with respect to the cluster is carried out. The probabilities for a star to leave a cluster are estimated.
-
Корреляции и неустойчивости колебаний фазовой плотности в моделях рассеянных звездных скоплений, с. 65-73Проводится исследование динамической эволюции шести моделей рассеянных звездных скоплений по данным о фазовых координатах звезд, полученных при численном интегрировании уравнений движения звезд. Для этой цели используются фазовые координаты звезд для 100 равноотстоящих моментов времени от начального t=0 до tm≅5.1τvr (τvr - начальное время бурной релаксации скопления). На этом интервале времени ошибки, связанные с округлением и экспоненциальным нарастанием возмущений в исходных координатах звезд, существенно не сказываются на статистических выводах о характере движения звезд скопления. Метод исследования основан на вычислениях взаимных корреляционных функций C1,2=C1,2(τ,r) (τ - временная задержка, r - расстояние между точками) для флуктуаций фазовой плотности и применении Фурье-преобразования функций C1,2 для расчета спектра частот и дисперсионных соотношений. Анализ графиков функций C1,2, спектров частот и дисперсионных кривых подтверждает существование в моделях волн фазовой плотности, позволяет установить полный спектр радиальных колебаний фазовой плотности, отделить устойчивые колебания от неустойчивых, рассчитать периоды колебаний фазовой плотности и инкременты нарастания неустойчивых колебаний фазовой плотности. Подтверждены теоретические оценки периодов известных неустойчивых гомологических колебаний ядер моделей скоплений. Указываются некоторые астрофизические приложения полученных результатов: возникновение иррегулярных структур в рассеянных скоплениях, слабая турбулентность в движениях звезд скоплений.
звездная динамика, фазовая плотность, корреляции, неустойчивые колебания, рассеянные звездные скопления
Correlations and instabilities of phase density fluctuations in models of open star clusters , pp. 65-73The investigation of dynamical evolution of 6 open cluster models is carried out on data about phase coordinates of stars received by numerical integration of stellar motion equations. To attain the aim the phase coordinates of stars for 100 equidistant moments of time from the initial t=0 to tm≅5.1τvr (τvr is the initial time of cluster violent relaxation), are used. Over the interval of time the rounding-off errors and errors because of exponential growth of initial coordinates perturbations do not affect statistical conclusions about motion behavior of cluster stars. The investigation method is based on calculations of mutual correlation functions C1,2=C1,2(τ,r) (τ is the time delay, r is the distance between the points) for phase density fluctuations and application of Fourier transformations of functions C1,2 in order to calculate frequency spectra and dispersion relations. The analysis of graphics C1,2, frequency spectra and dispersion curves confirms the existence of phase density waves in cluster models, allows to get a complete spectrum of phase density radial oscillations, to separate stable and unstable oscillations, to calculate the periods of phase density oscillations and increments of unstable phase density oscillations. The theoretical estimations of periods of known unstable homological core oscillations of cluster models are confirmed. Pointed out are some astrophysical applications of results received: the origin of irregular structures in open clusters, weak turbulence of cluster star motions.
-
Критически обсуждаются различные способы определения иррегулярных и регулярных сил в звездных системах. Наиболее удовлетворительным кажется определение Эддингтона, согласно которому регулярная сила - это сила притяжения сплошной гравитирующей среды, получающейся «размешиванием» вещества по системе. Интерес представляет также определение регулярной силы как математического ожидания случайной силы. Подчеркивается, что время пересечения τc, характерное время действия регулярных сил, определяет темп коллективных процессов в системе. Существенно, что регулярные силы могут приводить и, как правило, приводят к бесстолкновительной стохастизации. В этой связи рассматривается квазиэнтропия, среднее по фазовому пространству значение произвольной выпуклой функции от крупнозернистой функции распределения. Максимум квазиэнтропии для невращающихся систем возможен только при изотропном распределении скоростей. Приводятся найденные Антоновым выражения для ее первой и второй вариаций. Если вторая вариация положительна хотя бы для некоторого изменения плотности, то это означает, что данное состояние системы не является наивероятнейшим. Отсюда следует, что эволюция вдоль последовательности политропных шаров невозможна без поступления в систему дополнительной энергии. Напоминается классификация видов фазового размешивания в бесстолкновительных системах.
Кратко рассматривается проблема столкновительной релаксации в гравитирующих системах. Излагается подход к ее решению с точки зрения теории геодезических потоков с последующим усреднением по ансамблю, что требует знания закона распределения случайной силы. Чтобы избежать обрезания распределения Хольцмарка на малых прицельных расстояниях, использовано распределение случайной силы, найденное Петровской. В этом случае оказывается, что отношение эффективного времени стохастизации к времени пересечения пропорционально N⅓/(ln N)½, где N>>1 - число тел в системе. Полученная временная шкала столкновительной эволюции практически совпадает с шкалой, ранее предложенной Генкиным.
Irregular and regular forces in stellar systems, pp. 121-145Various ways of definition of irregular (random) and regular (smoothed) forces in stellar systems are critically discussed. The most satisfactory is Eddington's one according to which the regular force is an attraction force of a continuous fluid resulting from spreading a stellar mass over a system. Also, a definition of the regular force as a mathematical expectation of a random force is of interest. It is emphasized that the crossing time, τc, a time scale of regular forces, characterizes the rate of collective processes in the system, including collisionless relaxation, that (as a rule) occurs in gravitating systems. The quasi-entropy, i.e., a result of averaging of an arbitrary convex function of a coarse-grained distribution function over the phase space, is discussed as a measure of collisionless stochastization. For non-rotating systems the maximum of quasi-entropy can be reached only for isotropic velocity distributions. Formulas for the first and second variations of quasi-entropy, found by Antonov, are given. If there exists the density variation so that the second variation of quasi-entropy is positive, then the present state of the system is not the most probable. It follows from this assertion that evolution along a sequence of polytropic spheres is not possible without some energy input to the system. We recall the classification of forms of the phase mixing in collisionless systems.
The problem of collisional relaxation in gravitating systems is briefly discussed. We state the approach to its analysis on the basis of studying geodesic flows and the ensemble averaging as the next step, which requires the knowledge of distribution of a random force. To avoid truncation of Holtsmark's distribution at small impact parameters the distribution of random force by Petrovskaya was used. In that case the ratio of the effective stochastization time to the crossing time is proportional to N⅓/(ln N)½, where N>>1 is the number of stars in the system. This evolutionary time scale is close to the one found earlier by Genkin.
-
Орбиты далеких спутников звезд, с. 116-126Численно исследовано плоское движение материальной точки в поле точечной массы (звезды) и Галактики. Для потенциала Галактики принималось приливное приближение. Уравнения движения интегрировались на интервале времени до 60/√A(A-B) (A, B - коэффициенты Оорта). Частица считалась улетающей, если она удалялась от звезды на расстояние, превышающее 2 расстояния от точки либрации. У остающихся частиц оскулирующие эксцентриситеты или уменьшались, или оставались в среднем (по времени) неизменными. Показана зависимость доли орбит разного типа от начальных условий.
Orbits of distant satellites of stars, pp. 116-126Planar motion of point mass in the field of a point mass (a star) and the Galaxy was studied numerically. The tidal (quadratic) approximation for the galactic potential was accepted. The equations of motion were integrated for the time interval equal to 60/√A(A-B) (A, B are Oort's coefficients). A particle was considered as escaping if its distance from the star exceeded two distances of the libration points. It was found that osculating eccentricities of remaining particles could be decreasing systematically or almost constant. Table 1 shows dependence of orbit types on initial conditions.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.