Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'two-layer system':
Найдено статей: 5
  1. Кандоба И.Н., Козьмин И.В., Новиков Д.А.
    Численное исследование одной нелинейной задачи быстродействия, с. 429-444

    Обсуждаются вопросы построения допустимых управлений в одной задаче оптимального управления нелинейной динамической системой при наличии ограничений на ее текущее фазовое состояние. Рассматриваемая динамическая система описывает управляемое движение ракеты-носителя от точки старта до момента ее выхода на заданную околоземную эллиптическую орбиту. Задача заключается в построении программного управления, которое обеспечивает выведение ракетой-носителем на орбиту полезной нагрузки максимальной массы и выполнение дополнительных ограничений на текущее фазовое состояние системы. Дополнительные ограничения обусловлены необходимостью учитывать величины скоростного напора, углов атаки и скольжения при движении ракеты в плотных слоях атмосферы и осуществлять падение ее отделяемых частей в заданные районы на земной поверхности. Для ракет-носителей ряда классов такая задача равносильна нелинейной задаче быстродействия с фазовыми ограничениями. Предлагаются и численно исследуются два алгоритма построения в этой задаче допустимых управлений, обеспечивающих выполнение указанных дополнительных фазовых ограничений. Методологическую основу одного алгоритма составляет применение некоторого прогнозирующего управления, которое априори строится в задаче быстродействия без учета в ней дополнительных ограничений, а другого - использование специальных режимов управления. Приводятся результаты численного моделирования.

    Kandoba I.N., Koz'min I.V., Novikov D.A.
    Numerical investigation of a nonlinear time-optimal problem, pp. 429-444

    The questions of constructing admissible controls in a problem of optimal control of a nonlinear dynamic system under constraints on its current phase state are discussed. The dynamic system under consideration describes the controlled motion of a carrier rocket from the launching point to the time when the carrier rocket enters a given elliptic earth orbit. The problem consists in designing a program control for the carrier rocket that provides the maximal value of the payload mass led to the given orbit and the fulfillment of a number of additional restrictions on the current phase state of the dynamic system. The additional restrictions are due to the need to take into account the values of the dynamic velocity pressure, the attack and slip angles when the carrier rocket moves in dense layers of the atmosphere. In addition it is required to provide the fall of detachable parts of the rocket into specified regions on the earth surface. For carrier rockets of some classes, such a problem is equivalent to a nonlinear time-optimal problem with phase constraints. Two algorithms for constructing admissible controls ensuring the fulfillment of additional phase constraints are suggested. The numerical analysis of these algorithms is performed. The methodological basis of one algorithm is the application of some predictive control, which is constructed without taking into account the constraints above. Another algorithm is based on special control modes. The results of numerical modeling are presented.

  2. Мы исследуем эволюцию осесимметричного двухслойного медленного течения вязкой жидкости со свободной границей, которое создается начальным рельефом границ слоев и скоростями на нижней границе. Каждый слой имеет постоянную плотность и вязкость. Предполагается, что верхний слой имеет меньшую плотность, чем нижний. На основе уравнений Рейнольдса построена система нелинейных параболических уравнений относительно поверхности и границы раздела слоев для описания этого течения. Принимая безразмерный скачок плотностей между слоями как малый параметр, мы применяем метод асимптотических разложений, чтобы выделить главное приближение для медленной эволюции уравнений движения на больших временах. Получено асимптотическое уравнение, связывающее смещения поверхности и границы раздела слоев со скоростями на нижней границе. На основе этого уравнения разработан алгоритм для расчета полей скоростей в слоях на больших временах. Для наглядного представления течения используются линии тока. Численные результаты показали устойчивость линий тока в верхнем слое при вариации скорости на нижней границе. В качестве геофизических приложений разработанный алгоритм используется для количественной оценки поля скоростей в коре под крупномасштабными кольцевыми структурами на Луне (верхний слой), создаваемого глубинными движениями в подстилающей мантии (нижний слой). Чтобы подтвердить достоверность результатов моделирования, мы сопоставляем рассчитанные поля скоростей с системами хребтов кольцевых структур, полученных из экспериментальных наблюдений. Модельное сравнение показало пространственную близость радиусов кольцевых хребтов и особых точек скорости течения на поверхности.

    We study the long-time evolution of axisymmetric free-surface two-layered creeping flow subject to the initial topography of its boundaries and bottom velocities. Each layer has uniform density and viscosity. The upper layer is assumed to have a smaller density than the lower layer. Based on lubrication approximation (the Reynolds equations) the nonlinear system of diffusion-type equations with respect to the surface and interface between the layers is obtained to describe this flow. Taking the dimensionless density contrast between the layers as a small parameter, we apply the method of asymptotic expansions to extract leading-term approximation for the slowly varying large-time evolution of the governing equations. An asymptotic equation relating both surface and interface displacement to the bottom velocities is derived. Based on this equation, we develop the algorithm to calculate velocity fields within layers for large time. Streamlines are used to visualize the flow. Numerical results reveal stability of the streamlines in the upper layer under variation of the bottom velocity. As geophysical applications, the developed algorithm is used to evaluate the velocity field in the crust (the upper layer) beneath the large-scale lunar multi-ring basins influenced by deep movements in the underlying mantle (the lower layer). To validate the results of modeling, we compare the calculated velocity fields with basin ridge systems obtained by experimental observations. The model comparison has shown proximity of radii of basin rings and critical points of the surface velocity.

  3. Описаны результаты линейного анализа устойчивости плоскопараллельного течения несжимаемой жидкости над слоем насыщенной пористой среды при различных значениях ее пористости. Рассматривается ограниченная двухслойная система, состоящая из слоя однородной недеформируемой пористой среды конечной толщины и слоя несжимаемой однородной жидкости над ним. Пористый слой ограничен снизу твердой стенкой, верхняя граница жидкости рассматривается как свободная, но недеформируемая. Выполнен анализ линейной устойчивости стационарного течения в такой системе в условиях существования бимодальной нейтральной кривой и варьировании пористости нижнего слоя. Продемонстрирован переход между двумя основными модами неустойчивости: длинноволновой, связанной с точками перегиба в профиле течения, и коротковолновой, обусловленной большим поперечным градиентом скорости течения вблизи границы раздела жидкости и пористой среды. Уменьшение пористости влечет стабилизацию длинноволновых возмущений без существенного изменения критического волнового числа. Коротковолновые возмущения при этом дестабилизируются, а их критическое волновое меняется в широких пределах. При значении пористости меньше 0.7 инерционные слагаемые в уравнении фильтрации и величина механических напряжений на границе раздела возрастают настолько, что доминирующим механизмом развития неустойчивости становится аналог неустойчивости Кельвина-Гельмгольца. В узком интервале пористости реализуется полоса устойчивости течения, разделяющая ветви нейтральной кривой.

    The stability of incompressible fluid plane-parallel flow over a layer of a saturated porous medium is studied. The results of a linear stability analysis are described at different porosity values. The considered system is bounded by solid wall from the porous layer bottom. Top fluid surface is free and rigid. A linear stability analysis of plane-parallel stationary flow is presented. It is realized for parameter area where the neutral stability curves are bimodal. The porosity variation effect on flow stability is considered. It is shown that there is a transition between two main instability modes: long-wave and short-wave. The long-wave instability mechanism is determined by inflection points within the velocity profile. The short-wave instability is due to the large transverse gradient of flow velocity near the interface between liquid and porous medium. Porosity decrease stabilizes the long wave perturbations without significant shift of the critical wavenumber. Simultaneously, the short-wave perturbations destabilize, and their critical wavenumber changes in wide range. When the porosity is less than 0.7, the inertial terms in filtration equation and magnitude of the viscous stress near the interface increase to such an extent that the Kelvin-Helmholtz analogue of instability becomes the dominant mechanism for instability development. The stability band realizes in narrow porosity area. It separates the two branches of the neutral curve.

  4. Рассмотрены закрученные ламинарные осесимметричные течения вязких несжимаемых жидкостей в потенциальном поле массовых сил. Исследования течений осуществляются в цилиндрической системе координат. В течениях отдельно рассматриваются области, в которых осевая производная окружной скорости не может принимать нулевое значение в какой-нибудь открытой окрестности (существенно закрученные течения), и области, в которых эта производная равна нулю (область со слоистой закруткой). Показано, что для областей со слоистой закруткой можно применять известный метод (метод вязких вихревых доменов), разработанный для незакрученных течений. Для существенно закрученных течений получена формула для вычисления радиально-осевой скорости воображаемой жидкости через окружную компоненту завихренности, окружную циркуляцию реальной жидкости и частные производные этих функций. Частицы этой воображаемой жидкости «переносят» вихревые трубки радиально-осевой составляющей завихренности с сохранением интенсивности этих трубок, а также «переносят» величину окружной циркуляции и произведение окружной составляющей завихренности на некоторую функцию расстояния до оси симметрии. Предложен неинтегральный способ восстановления поля скорости по полю завихренности. Он сводится к решению системы линейных алгебраических уравнений с двумя переменными. Полученный результат предлагается использовать для распространения метода вязких вихревых доменов на закрученные осесимметричные течения.

    Swirling laminar axisymmetric flows of viscous incompressible fluids in a potential field of body forces are considered. The study of flows is carried out in a cylindrical coordinate system. In the flows, the regions in which the axial derivative of the circumferential velocity cannot take on zero value in some open neighborhood (essentially swirling flows) and the regions in which this derivative is equal to zero (the region with layered swirl) are considered separately. It is shown that a well-known method (the method of viscous vortex domains) developed for non-swirling flows can be used for regions with layered swirling. For substantially swirling flows, a formula is obtained for calculating the radial-axial velocity of an imaginary fluid through the circumferential vorticity component, the circumferential circulation of a real fluid, and the partial derivatives of these functions. The particles of this imaginary fluid “transfer” vortex tubes of the radial-axial vorticity component while maintaining the intensity of these tubes, and also “transfer” the circumferential circulation and the product of the circular vorticity component by some function of the distance to the axis of symmetry. A non-integral method for reconstructing the velocity field from the vorticity field is proposed. It is reduced to solving a system of linear algebraic equations in two variables. The obtained result is proposed to be used to extend the method of viscous vortex domains to swirling axisymmetric flows.

  5. Рассматривается двухслойная система, состоящая из слоя пористой среды конечной толщины и слоя однородной жидкости над ним. Пористый слой ограничен снизу твердой стенкой, верхняя граница жидкости рассматривается как недеформируемая. Исследуется влияние процесса вымывания растворенной примеси, содержащейся в жидкости, заполняющей слой пористой среды, на устойчивость стационарного плоскопараллельного течения однородной жидкости над ним. Пористая среда описывается моделью Бринкмана с условиями Ошоа-Тапия-Уитейкера на границе раздела потоков. Получено точное и приближенное решение для профиля концентрации примеси. В приближении «замороженного» распределения концентрации найден квазистационарный профиль скорости течения в системе. Проведено численное исследование линейной задачи устойчивости течения в широком диапазоне различных параметров задачи. При достижении достаточной скорости течения в системе развиваются колебательные возмущения, приводящие к развитию бегущих волн на границе раздела. Показано, что учет конвективного и диффузионного транспорта примеси практически не оказывает влияния на структуру нейтральных кривых и критические числа Рейнольдса.

    A two-layer system consisting of a porous layer of finite thickness and a uniform fluid layer on top is considered. A rigid wall bounds the porous layer from below, while the upper fluid surface is assumed to be undeformable. We study the process of admixture extraction from the porous layer and its influence on the stability of the stationary plane-parallel flow above it. We describe a porous layer using a Brinkman model with interface boundary conditions by Ochoa-Tapia-Whitaker. We obtain an exact and an approximate solution for the concentration profile. The quasistationary velocity profile is obtained using “frozen” concentration distribution. We solve a linear stability problem for the plane-parallel stationary flow in a wide range of system parameters. Oscillatory instability evolved in the system at the sufficient flow velocity corresponds to traveling waves near the interface. We show that the convective and diffusion transport practically does not affect the structure of neutral stability curves and Reynolds numbers.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref