Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'vortex-body interaction':
Найдено статей: 2
  1. В статье рассмотрена задача о движении в поле силы тяжести твердого тела, обладающего формой кругового цилиндра, взаимодействующего с точечным вихрем, в идеальной жидкости. В отличие от предыдущих работ в данном случае циркуляция жидкости вокруг цилиндра предполагается равной нулю. Уравнения движения системы представлены в гамильтоновой форме. Указаны первые интегралы системы - горизонтальная и вертикальная компоненты импульса, - последний из которых, очевидно, неавтономный. Используя автономный интеграл, проведена редукция системы на одну степень свободы в ранее не рассматриваемом случае нулевой циркуляции. Показано, что в отличие от случая циркуляционного обтекания в отсутствие точечных вихрей, в котором движение цилиндра будет происходить в ограниченной горизонтальной полосе, при наличии вихрей и циркуляции, равной нулю, вертикальная координата цилиндра неограниченно убывает. Дальнейшее внимание в работе сконцентрировано на численном исследовании динамики системы, которая при нулевой циркуляции обладает некомпактными траекториями. Построены различные виды функций рассеяния вихря на цилиндре. Вид этих функций свидетельствует о хаотическом характере рассеяния и, следовательно, об отсутствии дополнительного аналитического интеграла.

    We consider a system which consists of a circular cylinder subject to gravity interacting with a point vortex in a perfect fluid. In contrast to previous works, in this paper the circulation about the cylinder is assumed to be zero. The governing equations are Hamiltonian and admit evident integrals of motion: the horizontal and vertical components of the momentum; the latter is obviously non-autonomous. Using autonomous integral we reduce the order of the system by one degree of freedom in a case of zero circulation which early was not considered. Unlike nonzero circulation in the absence of point vortices when the cylinder moves inside a certain horizontal stripe it is shown that in the presence of vortices and with circulation equal to zero a vertical coordinate of the cylinder is unbounded decreasing. We then focus on the numerical study of dynamics of our system. In a case of zero circulation trajectories are noncompact. The different kinds of the scattering function of the vortex by cylinder were obtained. The form of these functions argues to chaotic behavior of the scattering which means that an additional analytical integral is absent.

  2. Рассмотрена динамика системы, описывающей управляемое движение неуравновешнного кругового профиля в присутствии точечных вихрей. Управление движением профиля реализуется за счет периодического изменения положения центра масс, гиростатического момента и момента инерции системы. Предложен вывод уравнений движения на основе подхода Седова, уравнения движения представлены в гамильтоновой форме. Рассмотрено периодическое возмущение известного интегрируемого случая.

    The dynamics of a system governing the controlled motion of an unbalanced circular foil in the presence of point vortices is considered. The foil motion is controlled by periodically changing the position of the center of mass, the gyrostatic momentum, and the moment of inertia of the system. A derivation of the equations of motion based on Sedov's approach is proposed, the equations of motion are presented in the Hamiltonian form. A periodic perturbation of the known integrable case is considered.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref