Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'Reduction':
Найдено статей: 32
  1. Казарников А.В., Ревина С.В.
    Бифуркации в системе Рэлея с диффузией, с. 499-514

    Рассматривается система реакции-диффузии с кубической нелинейностью, которая является бесконечномерным аналогом классической системы Рэлея и частным случаем системы Фитцью-Нагумо. Предполагается, что пространственная переменная изменяется на отрезке, на концах которого заданы однородные краевые условия Неймана. Известно, что в данном случае в системе Рэлея с диффузией существует пространственно-однородный автоколебательный режим, совпадающий с предельным циклом классической системы Рэлея. В настоящей работе показано существование счетного множества критических значений управляющего параметра, при которых возникают пространственно-неоднородные автоколебательные и стационарные режимы. Данные режимы устойчивы относительно возмущений, принадлежащих некоторым бесконечномерным инвариантным подпространствам системы, но неустойчивы во всем фазовом пространстве. Это свойство объясняет, почему в результате численных экспериментов при некоторых значениях параметра различным начальным условиям соответствуют нулевое, периодическое по времени или стационарное решение. Асимптотика вторичных решений построена методом Ляпунова-Шмидта. Явно найдены первые члены разложения, проанализированы формулы для общего члена асимптотики. Показано, что на инвариантных подпространствах происходит мягкая потеря устойчивости нулевого равновесия. Эволюция вторичных режимов при увеличении значений надкритичности исследована численно. Установлено, что с ростом значений надкритичности вторичные автоколебательные режимы постепенно сменяются стационарными. Амплитуда стационарных решений растет по мере увеличения надкритичности, а профиль асимптотически стремится к профилю меандра.

    Kazarnikov A.V., Revina S.V.
    Bifurcations in a Rayleigh reaction-diffusion system, pp. 499-514

    We consider a reaction-diffusion system with a cubic nonlinear term, which is a special case of the Fitzhugh-Nagumo system and an infinite-dimensional version of the classical Rayleigh system. We assume that the spatial variable belongs to an interval, supplemented with Neumann boundary conditions. It is well-known that in that specific case there exists a spatially-homogeneous oscillatory regime, which coincides with the time-periodic solution of the classical Rayleigh system. We show that there exists a countable set of critical values of the control parameter, where each critical value corresponds to the branching of new spatially-inhomogeneous auto-oscillatory or stationary regimes. These regimes are stable with respect to small perturbations from some infinite-dimensional invariant subspaces of the system under study. This, in particular, explains the convergence of numerical solution to zero, periodic or stationary solution, which is observed for some specific initial conditions and control parameter values. We construct the asymptotics for branching solutions by using Lyapunov-Schmidt reduction. We find explicitly the first terms of asymptotic expansions and study the formulas for general terms of asymptotics. It is shown that a soft loss of stability occurs in invariant subspaces. We study numerically the evolution of secondary regimes due to the increase of control parameter values and observe that the secondary periodic solutions are transformed into stationary ones as the control parameter value increases. Next, the amplitude of stationary solutions continues to grow and the solution asymptotically converges to the square wave regime.

  2. Алгоритм понижения порядка обыкновенных дифференциальных уравнений (ОДУ) с использованием оператора инвариантного дифференцирования (ОИД) допускаемой алгебры Ли модифицирован для систем ОДУ с малым параметром, допускающих приближенные алгебры Ли операторов. Приведены инвариантные представления ОДУ второго порядка и систем двух ОДУ второго порядка. Введен ОИД приближенной алгебры Ли. Показано, что можно построить ОИД специального вида, позволяющий получать первый интеграл рассматриваемой системы. Приведены примеры использования алгоритма для случаев полного и неполного наследования алгебры Ли.

    The algorithm for the order reduction of ordinary differential equations (ODEs) by using the operator of invariant differentiation (OID) of admitted Lie algebra is modified for systems of ODEs with a small parameter that admit approximate Lie algebras of operators. Invariant representations of second-order ODEs and systems of two second-order ODEs are presented. The OID of approximate Lie algebra is introduced. It is shown that it is possible to construct a special type of OID, which is used for obtaining the first integral of the system considered. Examples of using the algorithm for cases of complete and incomplete inheritance of a Lie algebra are given.

  3. Изучается многомерный случай нелинейной системы реакции-диффузии, моделируемый системой двух уравнений параболического типа со степенными нелинейностями. Такого рода системы можно применять для моделирования процесса распространения в пространстве взаимодействующих распределенных формаций роботов двух типов. Такие уравнения описывают также процессы нелинейной диффузии в реагирующих двухкомпонентных сплошных средах. Предложен оригинальный вариант метода редукции, сводящий построение зависимости точного решения от пространственных переменных к решению уравнения Гельмгольца, а зависимости от времени — к решению линейной системы обыкновенных дифференциальных уравнений. Построен ряд примеров многопараметрических семейств точных решений, задаваемых элементарными функциями.

    Kosov A.A., Semenov E.I., Tirskikh V.V.
    On multidimensional exact solutions of a nonlinear reaction-diffusion system, pp. 225-239

    We study a multidimensional case of a nonlinear reaction-diffusion system modeled by a system of two parabolic equations with power nonlinearities. Such systems can be used to simulate the process of propagation in space of interacting distributed formations of robots of two types. Such equations also describe the processes of nonlinear diffusion in reacting two-component continuous media. An original version of the reduction method is proposed, which reduces the construction of the dependence of the exact solution on spatial variables to the solution of the Helmholtz equation, and the dependence on time to the solution of a linear system of ordinary differential equations. A number of examples of multiparameter families of exact solutions given by elementary functions are constructed.

  4. В статье рассмотрена задача о движении в поле силы тяжести твердого тела, обладающего формой кругового цилиндра, взаимодействующего с точечным вихрем, в идеальной жидкости. В отличие от предыдущих работ в данном случае циркуляция жидкости вокруг цилиндра предполагается равной нулю. Уравнения движения системы представлены в гамильтоновой форме. Указаны первые интегралы системы - горизонтальная и вертикальная компоненты импульса, - последний из которых, очевидно, неавтономный. Используя автономный интеграл, проведена редукция системы на одну степень свободы в ранее не рассматриваемом случае нулевой циркуляции. Показано, что в отличие от случая циркуляционного обтекания в отсутствие точечных вихрей, в котором движение цилиндра будет происходить в ограниченной горизонтальной полосе, при наличии вихрей и циркуляции, равной нулю, вертикальная координата цилиндра неограниченно убывает. Дальнейшее внимание в работе сконцентрировано на численном исследовании динамики системы, которая при нулевой циркуляции обладает некомпактными траекториями. Построены различные виды функций рассеяния вихря на цилиндре. Вид этих функций свидетельствует о хаотическом характере рассеяния и, следовательно, об отсутствии дополнительного аналитического интеграла.

    We consider a system which consists of a circular cylinder subject to gravity interacting with a point vortex in a perfect fluid. In contrast to previous works, in this paper the circulation about the cylinder is assumed to be zero. The governing equations are Hamiltonian and admit evident integrals of motion: the horizontal and vertical components of the momentum; the latter is obviously non-autonomous. Using autonomous integral we reduce the order of the system by one degree of freedom in a case of zero circulation which early was not considered. Unlike nonzero circulation in the absence of point vortices when the cylinder moves inside a certain horizontal stripe it is shown that in the presence of vortices and with circulation equal to zero a vertical coordinate of the cylinder is unbounded decreasing. We then focus on the numerical study of dynamics of our system. In a case of zero circulation trajectories are noncompact. The different kinds of the scattering function of the vortex by cylinder were obtained. The form of these functions argues to chaotic behavior of the scattering which means that an additional analytical integral is absent.

  5. Рассматривается многомерное уравнение нелинейной диффузии типа пантографа с линейно растущим запаздыванием по времени и масштабированием по пространственным переменным в источнике (стоке). Предложено строить точные решения методом редукции с использованием двух анзацев с квадратичной зависимостью от пространственных переменных. Зависимость решения от пространственных переменных находится из системы алгебраических уравнений, а зависимость от времени находится из системы обыкновенных дифференциальных уравнений с линейно растущим запаздыванием аргумента. Приводится ряд примеров точных решений, как радиально симметричных, так и анизотропных по пространственным переменным.

    We consider a multidimensional pantograph-type nonlinear diffusion equation with a linearly increasing time delay and scaling with respect to spatial variables in the source (sink). It is proposed to construct exact solutions by the reduction method using two ansatzes with a quadratic dependence on spatial variables. The dependence of the solution on spatial variables is found from a system of algebraic equations, and the dependence on time is found from a system of ordinary differential equations with a linearly increasing delay of the argument. A number of examples of exact solutions are given, both radially symmetric and anisotropic with respect to spatial variables.

  6. В современной физической литературе неоднократно возникала потребность в формулах, позволяющих в квантовой одномерной задаче рассеяния свести вычисление вероятности отражения (прохождения) для потенциала, состоящего из нескольких «барьеров», к вероятностям отражения и прохождения через эти «барьеры». В настоящей работе исследуется задача рассеяния для разностного оператора Шрёдингера с потенциалом, являющимся суммой N функций (описывающих «барьеры» или «слои») с попарно непересекающимися носителями. С помощью уравнения Липпмана-Швингера доказана теорема, позволяющая вычисление амплитуд отражения и прохождения для данного потенциала свести к вычислению амплитуд отражения и прохождения для слагаемых. Для N=2 получены простые явные формулы, осуществляющие такое сведение. Рассмотрены частные случаи четного первого барьера и двух одинаковых четных (после соответствующих сдвигов) барьеров. Разумеется, аналогичные результаты справедливы и для вероятностей отражения и прохождения. Получено простое уравнение для нахождения резонансов двухбарьерной структуры в терминах амплитуд для каждого из двух барьеров.

    В статье также приведена иная схема доказательства полученных результатов, основанная на разложении в ряд T-оператора, позволяющая обосновать физические представления о рассеянии на многослойной структуре как о многократном рассеянии на отдельно взятых слоях. При доказательстве утверждений используется известный прием сведения уравнения Липпмана-Швингера к «модифицированному» уравнению в гильбертовом пространстве, что позволяет, в свою очередь, воспользоваться теорией Фредгольма. Конечно, все полученные результаты остаются справедливыми и для «непрерывного» оператора Шрёдингера, а выбор дискретного подхода обусловлен его растущей популярностью в квантовой теории твердого тела.

    In modern physics literature, the need for formulas that permit, in a quantum one-dimensional problem, to reduce a calculation of the reflection (transmission) probability for the potential consisting of some “barriers” to the reflection and transmission probabilities over these “barriers” repeatedly occurred. In this paper, we study the scattering problem for the difference Schrodinger operator with the potential which is the sum of N functions (describing the “barriers” or “layers”) with pairwise disjoint supports. With the help of the Lippmann-Schwinger equation, we proved the theorem which reduces the calculation of the reflection and transmission amplitudes for this potential, to the calculation of the ones for these barriers. For N=2 simple explicit formulas which realized this reduction were obtained. The particular cases for the even first barrier and two identical even (after appropriate shifts) barriers were studied. Of course, the similar results hold for the reflection (transmission) probabilities. We obtained the simple equation for the double-barrier structure resonances in terms of the amplitudes of each of the two barriers.

    In the paper, we also present the alternative scheme of the proof of the obtained results which are based on the series expansion of the T-operator. This approach substantiates the physical understanding of the scattering by a multilayer structure as multiple scattering on separate layers. To proof the theorems, the known method of reduction of the Lippmann-Schwinger equation to the “modified” equation in a Hilbert space is used. Of course, all the results remain valid for the “continuous” Schrodinger operator, and the choice of the discrete approach is due to its growing popularity in the quantum theory of solids.

  7. Рассматривается стационарная управляемая система в конечномерном эвклидовом пространстве и на конечном промежутке времени. Изучается задача о сближении управляемой системы с компактным целевым множеством на заданном промежутке времени. Один из подходов к решению рассматриваемой задачи о сближении основан на выделении в пространстве позиций множества разрешимости, т.е. множества всех позиций системы, из которых, как из начальных, разрешима задача о сближении. Конструирование множества разрешимости - самостоятельная сложная и трудоемкая задача, которую удается точно решить лишь в редких случаях. В настоящей работе рассматриваются вопросы приближенного конструирования множества разрешимости в задаче о сближении нелинейной стационарной управляемой системы. Эта задача, как известно, тесно сопряжена с задачей конструирования интегральных воронок и трубок траекторий управляемых систем. Интегральные воронки управляемых систем можно приближенно конструировать по (временным) шагам как наборы соответствующих множеств достижимости, поэтому одним из основных элементов разрешающей конструкции в настоящей работе являются множества достижимости. В работе предлагается схема приближенного вычисления множества разрешимости задачи о сближении управляемой стационарной системы на конечном промежутке времени. В основе этой схемы лежит сведение к приближенному вычислению множеств разрешимости конечного числа более простых задач - задач о сближении с целевым множеством в фиксированные моменты времени из заданного временного промежутка. При этом моменты времени должны выбираться достаточно плотно в упомянутом промежутке времени. В работе проведено математическое моделирование задачи о сближении механической системы «Трансляционный осциллятор с ротационным актуатором». Представлено графическое сопровождение решения задачи.

    A time-invariant control system on a finite time interval in the finite-dimensional Euclidean space is considered. We discuss a problem of guidance with a compact target set for a control system on a given time interval. One way to solve the considered guidance problem is based on finding a solvability set in the phase space, namely, a set of all system positions from which, as from the initial ones, the guidance problem is solvable. The construction of the solvability set is an independent time-consuming problem which rarely has an exact solution. In this paper we discuss the approximate construction of a solvability set in the guidance problem for a time-invariant nonlinear control system. It is well-known that this problem is closely connected with the problem of constructing integral funnels and trajectory tubes of control systems. Integral funnels of control systems can be approximately constructed step-by-step as sets of corresponding attainability sets, therefore, attainability sets are considered to be the basic elements of the solving construction in this paper. Here, we propose a scheme of the solvability set approximate construction in a guidance problem for a time-invariant control system on a finite time interval. The basis of this scheme is reduction to the solvability sets approximate calculation of a finite number of simpler problems, namely, problems of guidance with the target set at fixed time moments from the given time interval. Wherein, the moments of time have to be chosen quite tightly in the mentioned time interval. As an example, we provide mathematical modeling of the guidance problem of the control system named “Translational Oscillator with Rotating Actuator” as well as the graphical support of the problem solution.

  8. Приводятся достаточные условия разрешимости нелинейных краевых задач для некоторых классов функционально-дифференциальных уравнений. Условия получены на основе редукции исходной задачи к уравнению с монотонным оператором.

    Sufficient conditions of resolvability of nonlinear boundary value problems for some classes of functional differential equations are presented. These conditions have been obtained on the basis of reduction of original problem to the equation with a monotone operator.

  9. В работе рассмотрена задача о движении в поле силы тяжести твердого тела, обладающего формой кругового цилиндра, взаимодействующего с N точечными вихрями, в идеальной жидкости. В общем случае циркуляция жидкости вокруг цилиндра предполагается отличной от нуля. Уравнения движения системы представлены в гамильтоновой форме. Указаны первые интегралы системы - горизонтальная и вертикальная компоненты импульса, - последний из которых, очевидно, неавтономный. Основное внимание сконцентрировано на исследовании конфигурации, аналогичной задаче Фёппля: цилиндр движется в поле тяжести в сопровождении вихревой пары (N=2). В этом случае циркуляция вокруг цилиндра равна нулю, а уравнения движения рассматриваются на некотором инвариантном многообразии. Показано, что, в отличие от конфигурации Фёппля, в поле силы тяжести относительное равновесие вихрей невозможно. Рассмотрена ограниченная задача: цилиндр предполагается достаточно тяжелым, вследствие чего вихри не оказывают влияния на его падение. Как полная, так и ограниченная задача исследована численно, в результате отмечено качественное сходство поведения решений: в большинстве случаев взаимодействие вихревой пары и цилиндра носит характер рассеяния.

    We consider a system which consists of a circular cylinder subject to gravity interacting with N vortices in a perfect fluid. Generically, the circulation about the cylinder is different from zero. The governing equations are Hamiltonian and admit evident integrals of motion: the horizontal and vertical components of the momentum; the latter is obviously non-autonomous. We then focus on the study of a configuration of the Foppl type: a falling cylinder is accompanied with a vortex pair (N=2). Now the circulation about the cylinder is assumed to be zero and the governing equations are considered on a certain invariant manifold. It is shown that, unlike the Foppl configuration, the vortices cannot be in a relative equilibrium. A restricted problem is considered: the cylinder is assumed to be sufficiently massive and thus its falling motion is not affected by the vortices. Both restricted and general problems are studied numerically and remarkable qualitative similarity between the problems is outlined: in most cases, the vortex pair and the cylinder are shown to exhibit scattering.

  10. На примере известной задачи о прокладке трассы изучаются возможности численного решения сосредоточенных задач оптимального управления методом параметризации управления с помощью линейной комбинации $\mu$ функций Гаусса. Напомним, что функция Гаусса (называемая также квадратичной экспонентой) - это функция вида $\varphi(x)=\dfrac{1}{\sigma\sqrt{2\pi}}\exp\left[-\dfrac{(x-m)^2}{2\sigma^2}\right]$. Основу метода составляет сведение исходной бесконечномерной задачи оптимизации к конечномерной задаче минимизации целевого функционала по параметрам аппроксимации управления с последующим применением численных методов конечномерной оптимизации. Данная статья опирается на исследование, проведенное автором ранее и касавшееся возможностей аппроксимации функций одного переменного на конечном отрезке линейной комбинацией функций Гаусса, и является его непосредственным продолжением. Прежде всего, мы доказываем утверждение об аппроксимации на любом конечном отрезке материнского вейвлета «мексиканская шляпа» линейной комбинацией двух квадратичных экспонент. Отсюда получаем теоретическое обоснование возможности эффективной аппроксимации функций одного переменного на любом конечном отрезке линейными комбинациями функций Гаусса. После этого мы проводим сравнение качества аппроксимации указанного вида с аппроксимацией по Котельникову на базе численных экспериментов. Затем приводится постановка задачи о прокладке трассы, а также результаты ее численного решения при различных способах параметризации управления, наглядно демонстрирующие преимущества предлагаемого способа, в частности устойчивость численного решения к погрешности вычисления параметров аппроксимации оптимального управления даже при использовании малого количества этих параметров.

    On the example of well known problem of a road construction we study the opportunities of numerical solution for lumped optimal control problems by the method of control parametrization with the help of a linear combination of $\mu$ Gaussian functions. Recall that a Gaussian function (named also as quadratic exponent) is one defined as follows $\varphi(x)=\dfrac{1}{\sigma\sqrt{2\pi}}\exp\left[-\dfrac{(x-m)^2}{2\sigma^2}\right]$. The method is based on reduction of an original infinite dimensional optimization problem to finite dimensional minimization problem of a cost functional with respect to control approximation parameters. This paper is guided by the former author's research concerned the opportunities of approximation of one variable functions on a finite segment by a linear combination of $\mu$ Gaussian functions, and is to be regarded as its direct continuation. First of all, we prove an assertion concerning approximation on any finite segment for mother wavelet Mexican hat by a linear combination of two Gaussian functions. Hence, we obtain theoretical justification of the opportunity of an effective approximation for one variable functions on any finite segment with the help of linear combinations of Gaussian functions. After that, we give a comparison by quality of the approximation under study with the approximation in the style of Kotelnikov by means of numerical experiments. Then we give the road construction problem formulation and also the results of numerical solution for this problem which demonstrate obviously the advantages of our approach, in particular, a stability of numerical solution with respect to evaluation error of the approximation parameters for an optimal control, even with usage of small count of such parameters.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref