Все выпуски
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
Обобщение тождества Лагранжа и новые интегралы движения
В данной работе рассматриваются системы материальных точек в евклидовом пространстве, взаимодействующих как друг с другом, так и с внешним полем. В частности, рассматриваются системы частиц, взаимодействие между которыми описывается однородным потенциалом степени однородности α=-2. Для этих систем существует дополнительная скрытая симметрия, которой соответствует первый интеграл движения, называемый нами интегралом Якоби. Данный интеграл указывался ранее в различных работах, начиная с Якоби, однако мы приводим его в более общем виде.
Generalization of Lagrange’s identity and new integrals of motion
We discuss system of material points in Euclidean space interacting both with each other and with external field. In particular we consider systems of particles whose interacting is described by homogeneous potential of degree of homogeneity α=-2. Such systems were first considered by Newton and - more systematically - by Jacobi). For such systems there is an extra hidden symmetry, and corresponding first integral of motion which we call Jacobi integral. This integral was given in different papers starting with Jacobi, but we present in general. Furthermore, we construct a new algebra of integrals including Jacobi integral. A series of generalizations of Lagrange's identity for systems with homogeneous potential of degree of homogeneity α=-2 is given. New integrals of motion for these generalizations are found.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.