Все выпуски
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
О нескейлинге вероятности протекания простой кубической решетки: теория и компьютерный эксперимент
На основе известных свойств функции вероятности протекания простой кубической решётки размера L=2 в приближении линейной связи порога протекания бесконечной решётки xc и среднего значения xcL конечной решётки введена нескейлинговая функция вероятности протекания для решётки размера L>2. Показано, что на пороге протекания нескейлинговые вероятности для всех ПК решёток одинаковы.
Компьютерные эксперименты на основе метода Монте-Карло согласуются с предлагаемой в работе теорией.
On nonscaling probability function for passing in a simple cubic lattice: theory and computer experiment
Using known properties of the probability function for passing in a simple cubic lattice with L=2 in approximation of a linear relation between a passing threshold of an infinite lattice xc and average value xcL of a finite lattice, we introduce a nonscaling probability function of passing of a lattice with L>2. We show that on the passing threshold nonscaling probabilities for all simple cubic lattices are the same.
Computer experiments based on the Monte-Carlo method are in agreement with the theory proposed.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.