Все выпуски
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
Об одном методе расчёта порогов протекания квадратной и алмазной решёток в перколяционной задаче узлов
Предложен метод расчета порога протекания xc бесконечной решетки в d-мерном пространстве на основе среднего значения величины xcL решеток малых размеров L. Условие применимости метода ограничило круг рассматриваемых 2d и 3d решеток в задаче узлов до квадратной и алмазной. Величины xcL для этих решеток рассчитывались на основе вектора начального состояния решетки и матрицы смежности графа, соответствующего решетке с долей узлов x=1. Вычислены пороги протекания квадратной решетки xc=0,592744 и решетки алмаза xc=0,430308.
On one method of calculating percolation thresholds for square and diamond lattices in the percolation problem of knots
A method of calculating the percolation threshold xc in d-dimensional space is proposed based on the average value of the quantity xcL of small-sized lattices L. The condition for applicability of the method has limited the range of 2d and 3d lattices being considered in the problem of knots to square and diamond lattices. The values of xcL for these lattices have calculated in terms of the vector of the initial state of the lattice and the adjacency matrix of the graph corresponding to the lattice with the fraction of knots x=1. Percolation thresholds for the square lattice xc=0,592744 and the diamond lattice xc=0,430308 have been calculated.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.