Все выпуски
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
Амплитудные уравнения для трехмерной бидиффузионной валиковой конвекции с ячейками произвольной ширины в окрестности точек бифуркации Хопфа
Рассматривается трехмерная бидиффузионная конвекция валикового типа в бесконечном по горизонтали слое несжимаемой жидкости в окрестности точек бифуркации Хопфа. Методом многомасштабных разложений получена AΨ-система амплитудных уравнений, описывающая вариации амплитуды конвективных ячеек. Ширина ячеек может быть произвольной, что актуально для больших чисел Рэлея. Отмечается, что в трехмерном случае взаимодействие конвекции и поля горизонтальной завихренности играет существеннуюроль в динамике системы, и им нельзя пренебрегать. Обсуждаются различные формы выведенных уравнений.
Amplitude equations for three dimensional roll-type double-diffusive convection with an arbitrary cell width in the neighborhood of Hopf bifurcation points
Three dimensional roll-type double-diffusive convection in a horizontally infinite layer of an uncompressible liquid is considered in the neighborhood of Hopf bifurcation points. An AΨ-system of amplitude equations for the variations of convective rolls amplitude is derived by multiple-scaled method. The cell width can be arbitrary, which is important for large Rayleigh numbers. It is noted that in 3D case an interaction of convection and horizontal vorticity field plays an essential role and can hardly be neglected. Different cases of the derived equations are discussed.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.