Все выпуски
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
Перколяционная модель проводимости двухфазной решетки: теория и компьютерный эксперимент
Изучена проводимость (входящая в закон связи потока и обобщенной силы) перколяционной системы, состоящей из проводящей и непроводящей фаз. На основе представлений Шкловского-де Жена о топологической структуре бесконечного кластера установлена связь проводимости с вероятностью протекания. Получена зависимость решеточной проводимости в широком диапазоне изменения концентрации проводящей фазы. Показано согласование теории и компьютерного эксперимента, а также согласование скейлинговой зависимости проводимости (при критическом индексе из следствия гипотезы Александера-Орбаха) для квадратной и простой кубической решеток.
Percolation model of conductivity of two-phase lattice: theory and computer experiment
The conductivity of percolation system is studied (the system consists of conductive and non-conducting phases). The connection of conductivity with probability is determined using the conception of Shklovskii-de Gennes on the topological structure of infinite cluster. The dependence lattice conductivity is obtained in a wide range of modification of conductive phase concentration. The concordance of theory and computer experiment is shown. Also the concordance of scaling dependence and conductivity for square and simple cubical lattice is shown using the critical index from the consequence of hypothesis of Alexander-Orbah.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.