Все выпуски
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
Об одном семействе аналогов интеграла Перрона–Стилтьеса
Для двух прерывистых функций, заданных на отрезке, и специального параметра, названного дефектом, определяется понятие квазиинтеграла. Если существует интеграл Римана–Стилтьеса, то для любого дефекта существует квазиинтеграл, и все они равны между собой. Интеграл Перрона–Стилтьеса, если он существует, совпадает с одним из квазиинтегралов, где дефект определен специальным образом. Приведены необходимые и достаточные условия существования квазиинтегралов, доказаны их основные свойства, в частности, аналог формулы интегрирования по частям.
On a family of analogs of the Perron–Stieltjes integral
We define the concept of a quasi-integral for two regulated functions defined on a segment and for a special parameter called a defect. In case there exists the Riemann-Stieltjes integral, there is a quasi-integral for any defect, and all quasi-integrals are equal. The Perron-Stieltjes integral, if it exists, coincides with one of quasi-integrals where the defect is defined in a special way. We give proofs of necessary and sufficient conditions for the existence of quasi-integrals and of their basic properties, in particular, of the analogue of the formula of integration by parts.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.