Все выпуски
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
Идея Ходжа в перколяции: оценка порога протекания по элементарной ячейке
Рассмотрена перколяционная задача узлов. Методом двух решёток получены пороги протекания треугольной решётки xc = 1/2 и квадратной 1,2 решётки xc = 0,40725616.
На основе идеи Ходжа из алгебраической геометрии предложен метод оценки порога протекания xc бесконечной решётки по перколяционным свойствам её элементарной ячейки. Изучена модель элементарной ячейки решётки Бёте, которая в дальнейшем применена для оценки порогов протекания объёмноцентрированной кубической и гранецентрированной кубической решёток в трёхмерном случае и шестиугольной решётки в плоском случае. В результате оценки получены значения xc(bcc) = 0,24595716 для ОЦК, xc = xc(fcc) = 0,19925370 для ГЦК и xc = 0,69700003 для шестиугольной решёток.
Hodge’s idea in percolation: percolation threshold estimation by the unit cell
We consider a percolation problem of knots. The percolation threshold of triangular lattice xc = 1/2 was confirmed by the two lattices method and percolation threshold of quadratic 1,2 lattice xc = 0.40725616 was obtained.
We propose the method based on Hodge’s idea from algebraic geometry to estimate the percolation threshold xc of the infinite lattice by percolation properties of its unit sell. The model of unit cell of Bete lattice was studied and in the following it was applied for estimation of percolation thresholds of body-centered and face-centered cubic lattices in the three-dimensional case and of hexagonal lattice in the planar case. As a result of estimation the values of xc(bcc) = 0.24595716 for BCC, xc(fcc) = 0.19925370 for FCC and xc = 0.69700003 for hexagonal lattices were obtained.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.