Все выпуски
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
Классификация моделей систем твёрдых тел, используемых в численных расчётах динамического поведения машиностроительных конструкций
Представлена классификация форм уравнений динамики систем связанных твёрдых тел со структурой дерева. В основе классификации – компактные матричные формы записи уравнений кинематики и динамики систем тел, полученные с использованием понятия матрицы кинематической структуры и геометрического подхода при описании относительного движения. Единая форма записи уравнений движения удобна для представления и сравнения различных подходов к моделированию динамики систем твёрдых тел. Приведён сравнительный анализ вычислительной эффективности различных методов составления и разрешения уравнений движения систем твёрдых тел.
Classification of the models of rigid multibody systems applied for the numerical analysis of mechanical structures’ dynamic behavior
The classification of the dynamic equations forms for the rigid multibody systems with tree structure has been presented. The classification is based on the compact matrix forms of multibody systems’ kinematic and dynamic equations derived through the matrix of kinematic structure and geometrical approach for relative motion description. The unified form of motion’s equations is suitable for representing and comparing of various approaches to the modeling of rigid multibody systems’ dynamics. The comparative analysis of computational efficiency has been carried out in relation to various methods of formulation and solution for motion equations of rigid multibody systems.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.