Об одном варианте приближенного вычисления разрешающих управлений в задаче о сближении

 pdf (395K)

Рассматривается стационарная управляемая система в евклидовом пространстве, заданная на конечном промежутке времени. Изучается одна из центральных в теории управления задач  задача о сближении управляемой системы с множеством в фазовом пространстве системы в фиксированный (конечный) момент времени. Эта задача тесно связана с многими ключевыми задачами теории управления, например, с задачей об оптимальном быстродействии. В связи с этим представляется важным иметь эффективные алгоритмы построения решений этой задачи. Из-за сложности задачи невозможно аналитическое описание решений даже в относительно простых случаях. Построение приближенных решений задачи связано с конструированием интегральной воронки управляемой системы, но обращенной во времени. В работе приводится один алгоритм приближенного построения интегральной воронки, представляющей собой конечную аппроксимацию множества разрешимости задачи о сближении. В работе также описана процедура приближенного вычисления разрешающего управления, которая включает в себя запоминание локальных управлений. Приводится иллюстрирующий пример механической управляемой системы.

Ключевые слова: задача о сближении, управляемая система, множество достижимости, интегральная воронка, управление, обратный маятник
Цитата: Вестник Удмуртского университета. Математика. Механика. Компьютерные науки, 2012, вып. 4, с. 94-107
DOI: 10.20537/vm120408

On one version of approximate permitting control calculation in a problem of approaching

A stationary control system defined on a finite time interval in Euclidean space is considered. We discuss one of the main problems of control theory, which is a problem of approach of a control system and a set in a phase space at a fixed time. This problem is closely connected with key problems in control theory, for example, with a problem of optimal performance. That is why it is necessary to find effective algorithms for solving this task. Due to the complexity of this problem it is impossible to solve it analytically even for simple cases. The construction of approximate solutions considered in this paper is connected with the construction of integral funnel of the control system inverted in time. This work contains the description of one algorithm for the integral funnel construction which is a final approximation of a solvability set for a problem of approach. The procedure of finding solvability control of the approximate solution based on local control saving is described. Illustrating example of a mechanical control system is provided.

Keywords: approaching problem, control system, attainability set, integral funnel, control, inverse pendulum
Citation in English: Bulletin of Udmurt University. Mathematics, Mechanics, Computer Science, 2012, issue 4, pp. 94-107

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref