Пространство правильных функций и дифференциальное уравнение с обобщенными функциями в коэффициентах

 pdf (1921K)

Рассматриваются свойства пространств правильных функций, то есть функций, определенных на открытом (конечном, полубесконечном, бесконечном) промежутке, имеющих в каждой точке конечные односторонние пределы, а также плотные множества в этих пространствах. Задача Коши для скалярного линейного дифференциального уравнения с коэффициентами-производными правильных функций «погружается» в пространство обобщенных функций Коломбо. Для коэффициентов-производных ступенчатых функций в явном виде находится решение R(φμ,t) задачи Коши в представителях, предел которого при μ→+0 объявляется решением исходной задачи. Так появляется оператор T, который ставит в соответствие исходной задаче ее решение в виде правильной функции, определенный сначала лишь на плотном множестве. С помощью известной топологической теоремы о продолжении по непрерывности T продолжается до оператора T, определенного на всем пространстве правильных функций. Для неоднородной задачи Коши предложено явное представление решения. Приведен ряд иллюстрирующих примеров.

Ключевые слова: правильные функции, распределения, обобщенные функции Коломбо, дифференциальное уравнение
Цитата: Вестник Удмуртского университета. Математика. Механика. Компьютерные науки, 2014, вып. 1, с. 3-18
DOI: 10.20537/vm140101

The spaces of regulated functions and differential equations with generalized functions in coefficients

A function defined on an open (finite, semi-finite, infinite) interval is called regulated if it has finite one-sided limits at each point of its domain. In the present paper we study spaces of regulated functions, in particular, their dense subsets. Our motivation is applications to differential equations. Namely, we consider the Cauchy problem for a scalar linear differential equation with coefficients, which are derivatives of regulated functions. We immerse the Cauchy problem into the space of the Colombeau generalized functions. If the coefficients are derivatives of step functions, we find explicit solution R(φμ,t) of the Cauchy problem (in terms of representatives); its limit as μ→+0 is defined to be the solution of the original problem. In this way, we obtain a densely defined (on the space of regulated functions) operator T, which associates the solution to a Cauchy problem with this problem. Next, using a well-known topological result on a continuous extension, we extend the operator T to the operator T defined on the entire space of regulated functions. We have given the explicit representation of solution of the Cauchy problem for the inhomogeneous differential equation. Illustrative examples are also offered.

Keywords: regulated functions, distributions, generalized functions of Colombeau, differential equations
Citation in English: Bulletin of Udmurt University. Mathematics, Mechanics, Computer Science, 2014, issue 1, pp. 3-18

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref