Метод консервативной интерполяции на нестыкующихся поверхностных сетках

 pdf (567K)

Рассматривается задача консервативной интерполяции расчетных параметров между нестыкующимися поверхностными сетками. Разработан метод интерполяции на основе воксельного представления расчетной сетки с последующей оценкой площади пересечения каждого вокселя с ячейками сетки. Представление массы ячеек результирующей сетки осуществляется через линейную комбинацию известных масс ячеек базовой сетки. Метод позволяет рассматривать задачи интерполяции на криволинейных поверхностях, когда определение геометрического пересечения ячеек сеток является невозможным. Рассмотрены примеры интерполяции данных на основе различных функций на нестыкующихся сетках, описывающих плоские и криволинейные поверхности. Представлены результаты сравнения работы метода воксельной интерполяции с алгоритмом интерполяции на основе функций радиального базиса различных классов гладкости.

 

Ключевые слова: консервативная интерполяция, сетка вокселей, нестыкующиеся поверхностные сетки
Цитата: Вестник Удмуртского университета. Математика. Механика. Компьютерные науки, 2014, вып. 4, с. 64-75
DOI: 10.20537/vm140405

Conservative interpolation method between non-matching surface meshes

In this paper, we consider a problem of conservative interpolation data between non-matching surface meshes. We develop a new interpolation method based on voxel representation of the mesh followed by the evaluation of intersection area of each voxel with mesh cells. The mass of cells of the resulting mesh is represented through a linear combination of the known mass of parent cells. The method allows us to consider the problem of interpolation on curved surfaces when it is impossible to define the grid cells geometric intersection. The method was validated by numerical simulation of data interpolation based on various functions for the non-matching meshes describing plane and curved surfaces. The method of voxel interpolation was compared to the interpolation algorithm based on radial basis functions of different smoothness degree.

 

Keywords: conservative interpolation, voxel mesh, non-matching surface mesh
Citation in English: Bulletin of Udmurt University. Mathematics, Mechanics, Computer Science, 2014, issue 4, pp. 64-75

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref