Равномерное распределение точек на гиперповерхностях: моделирование случайных равновероятных вращений

 pdf (337K)

Описан универсальный метод для моделирования равномерных распределений точек на гладких регулярных поверхностях в евклидовых пространствах различной размерности. Представлена интерпретация множества возможных значений параметров Родрига-Гамильтона, используемых при описании вращения твердого тела как множества точек трехмерной гиперсферы в четырехмерном евклидовом пространстве. Установлена связь между случайными равновероятными вращениями твердого тела и равномерным распределением точек на поверхности трехмерной гиперсферы в четырехмерном евклидовом пространстве.

Ключевые слова: равномерное распределение точек на гиперповерхностях, случайные точки на гиперсфере, кватернионы, случайные вращения
Цитата: Вестник Удмуртского университета. Математика. Механика. Компьютерные науки, 2015, т. 25, вып. 1, с. 29-35
DOI: 10.20537/vm150104

Uniform distribution of points on hypersurfaces: simulation of random equiprobable rotations

The paper describes a universal method for simulation of uniform distributions of points on smooth regular surfaces in Euclidean spaces of various dimensions. The authors give an interpretation of a set of possible values of Rodrigues-Hamilton parameters used to describe a rigid rotation as a set of points of a three-dimensional hypersphere in four-dimensional Euclidean space. The relationship between random equiprobable rotations of a rigid body and a uniform distribution of points on the surface of a three-dimensional hypersphere in four-dimensional Euclidean space is established.

Keywords: uniform distribution of points on hypersurfaces, random points on a hypersphere, quaternions, random rotations
Citation in English: Bulletin of Udmurt University. Mathematics, Mechanics, Computer Science, 2015, vol. 25, issue 1, pp. 29-35

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref