Все выпуски
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
Об асимптотических свойствах решений разностных уравнений со случайными параметрами
Исследуется асимптотическое поведение решений разностных уравнений, правая часть каждого из которых в данный момент времени зависит не только от значения в предыдущий момент, но и от случайного параметра, принимающего значения в заданном множестве $\Omega.$ Получены условия устойчивости по Ляпунову и асимптотической устойчивости положения равновесия, выполненные для всех значений случайных параметров и выполненные с вероятностью единица. Показано, что задача о сосуществовании стохастических циклов различных периодов имеет решение, которое существенно отличается от известного результата А.Н. Шарковского для детерминированного разностного уравнения, а именно - при определенных условиях из существования стохастического цикла длины $k$ следует существование цикла любой длины $\ell>k$.
About asymptotical properties of solutions of difference equations with random parameters
We investigate the asymptotic behavior of solutions of difference equations. Their right-hand sides at given time depend not only on the value of state at the previous moment, but also on a random value from a given set $\Omega$. We obtain conditions of Lyapunov stability and asymptotic stability of the equilibrium for all values of random parameters and with probability one. We show that the problem of coexistence of stochastic cycles of different periods has a solution, which strongly differs from a known Sharkovsky result for a determined difference equation. Under some conditions, the existence of a stochastic cycle of length $k$ implies the existence of a cycle of any length $\ell>k$.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.