Все выпуски
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
Вложение феноменологически симметричных геометрий двух множеств ранга $(N,2)$ в феноменологически симметричные геометрии двух множеств ранга $(N+1,2)$
В данной работе предлагается новый метод классификации метрических функций феноменологически симметричных геометрий двух множеств. Он называется методом вложения, суть которого состоит в нахождении метрических функций феноменологически симметричных геометрий двух множеств высокого ранга по известной феноменологически симметричной геометрии двух множеств ранга на единицу ниже. Так по ранее известной метрической функции феноменологически симметричной геометрии двух множеств ранга $(2,2)$ находится метрическая функция феноменологически симметричной геометрии двух множеств ранга $(3,2)$, по феноменологически симметричной геометрии двух множеств ранга $(3,2)$ находится феноменологически симметричной геометрии двух множеств ранга $(4,2)$. Затем доказывается, что вложение феноменологически симметричной геометрии двух множеств $(4,2)$ в феноменологически симметричной геометрии двух множеств ранга $(5,2)$ отсутствует. Для решения поставленной задачи составляются специальные функциональные уравнения, которые сводятся к хорошо известным дифференциальным уравнениям.
Embedding of phenomenologically symmetric geometries of two sets of the rank $(N,2)$ into phenomenologically symmetric geometries of two sets of the rank $(N+1,2)$
In this paper, we propose a new method of classification of metric functions of phenomenologically symmetric geometries of two sets. It is called the method of embedding, the essence of which is to find the metric functions of phenomenologically symmetric geometries of two high-rank sets for the given phenomenologically symmetric geometry of two sets having rank less by $1$. By the previously known metric function of phenomenologically symmetric geometry of two sets of the rank $(2,2)$ the metric function of phenomenologically symmetric geometry of two sets of the rank $(3,2)$ is found, by the phenomenologically symmetric geometry of two sets of the rank $(3,2)$ we find phenomenologically symmetric geometry of two sets of the rank $(4,2)$. Then it is proved that embedding of phenomenologically symmetric geometry of two sets of the rank $(4,2)$ into the phenomenologically symmetric geometry of two sets of the rank $(5,2)$ is absent. To solve the problem we generate special functional equations which are reduced to well-known differential equations.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.