Проблема граничных условий для уравнений мелкой воды

 pdf (677K)

Обсуждается проблема выбора граничных условий в случае численного интегрирования уравнений мелкой воды на существенно неоднородном рельефе местности. При моделировании нестационарных течений поверхностных вод имеется динамическая граница, разделяющая жидкость и сухое дно. Для задач сезонных пойменных затоплений, ливневых паводков, выходов волн цунами на берег ситуация осложняется возникновением до- и сверхкритических режимов течений. Анализ использования различных способов задания условий для физических величин при достижении жидкости границы расчетной области показывает преимущества при использовании условий типа «водопад» при наличии сильных неоднородностей рельефа земной поверхности. При наличии водопада на границе расчетной области и неоднородности рельефа в окрестности границы может возникать участок, на котором формируется область критического течения с образованием гидравлического скачка, что существенно ослабляет влияние водопада на структуру потока вверх по течению.

Ключевые слова: модель мелкой воды, численные схемы, граничные условия, неоднородное дно
Цитата: Вестник Удмуртского университета. Математика. Механика. Компьютерные науки, 2016, т. 26, вып. 3, с. 401-417
DOI: 10.20537/vm160309

The problem of boundary conditions for the shallow water equations

The problem of choice of boundary conditions is discussed for the case of numerical integration of the shallow water equations on a substantially irregular relief. While modeling unsteady surface water flows there is a dynamic boundary that partitions liquid and dry bottom. The situation is complicated by the emergence of sub- and supercritical flow regimes for the problems of seasonal floodplain flooding, flash floods, tsunami landfalls. Analysis of the use of various methods of setting conditions for the physical quantities of liquid at the settlement of the boundary shows the advantages of using the waterfall type conditions in the presence of strong heterogeneities of landforms. When there is a waterfall on the border of computational domain and heterogeneity of the relief in the vicinity of the boundary, a portion may occur which is formed by the region of critical flow with the formation of a hydraulic jump, which greatly weakens the effect of the waterfall on the flow pattern upstream.

Keywords: shallow water model, numerical schemes, boundary conditions, irregular bottom
Citation in English: Bulletin of Udmurt University. Mathematics, Mechanics, Computer Science, 2016, vol. 26, issue 3, pp. 401-417

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref