Все выпуски
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
Об опорных множествах ациклических и транзитивных ориентированных графов
В предыдущих работах авторов на множестве всех бинарных отношений множества $X$ введено понятие бинарного рефлексивного отношения смежности и определена алгебраическая система, состоящая из всех бинарных отношений множества $X$ и из всех неупорядоченных пар смежных бинарных отношений. Если $X$ - конечное множество, то эта алгебраическая система - граф (граф бинарных отношений $G$). В настоящей работе для ациклических и транзитивных орграфов вводится понятие опорного множества: это совокупности $S(\sigma)$ и $S'(\sigma)$, состоящие из вершин орграфа $\sigma\in G$, имеющих нулевую полустепень захода и исхода соответственно. Доказано, что если $G_\sigma$ - связная компонента графа $G$, содержащая ациклический или транзитивный орграф $\sigma\in G$, то $\{S(\tau): \tau\in G_\sigma\}=\{S'(\tau): \tau\in G_\sigma\}$. Получена формула для числа транзитивных орграфов, имеющих фиксированное опорное множество. Аналогичная формула для числа ациклических орграфов, имеющих фиксированное опорное множество, получена авторами ранее.
On support sets of acyclic and transitive digraphs
In previous works of the authors, the concept of a binary reflexive adjacency relation was introduced on the set of all binary relations of the set $X$, and an algebraic system consisting of all binary relations of the set $X$ and of all unordered pairs of adjacent binary relations was defined. If $X$ is a finite set, then this algebraic system is a graph (graph of binary relations $G$). The current paper introduces the notion of a support set for acyclic and transitive digraphs. This is the collections $S(\sigma)$ and $S'(\sigma)$ consisting of the vertices of the digraph $\sigma\in G$ that have zero indegree and zero outdegree, respectively. It is proved that if $G_\sigma $ is a connected component of the graph $G$ containing the acyclic or transitive digraph $\sigma\in G$, then $\{S(\tau): \tau\in G_\sigma\}=\{S'(\tau): \tau\in G_\sigma\}$. A formula for the number of transitive digraphs having a fixed support set is obtained. An analogous formula for the number of acyclic digraphs having a fixed support set was obtained by the authors earlier.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.