Текущий выпуск Выпуск 2, 2017 Том 27

Асимптотическое поведение решений в динамических биматричных играх с дисконтированными индексами

 pdf (343K)

В работе рассматриваются динамические биматричные игры с интегральными показателями, дисконтированными на бесконечном интервале времени. Динамика системы задается дифференциальными уравнениями, описывающими изменение поведения игроков в зависимости от поступающих сигналов управления. Рассматривается задача построения равновесных траекторий в рамках минимаксного подхода, предложенного Н.Н. Красовским и А.И. Субботиным в теории дифференциальных игр. Используется конструкция динамического равновесия по Нэшу, которая развита в работах А.Ф. Клейменова. Для синтеза оптимальных стратегий управления применяется принцип максимума Л.С. Понтрягина в сочетании с методом характеристик для уравнений Гамильтона-Якоби. Получены аналитические формулы для кривых переключения оптимальных стратегий управления. Проведен анализ чувствительности равновесных решений в зависимости от параметра дисконтирования в интегральных функционалах выигрыша. Установлена асимптотическая сходимость равновесных траекторий по параметру дисконтирования к решению динамической биматричной игры со среднеинтегральными функционалами выигрыша, которые исследовались в работах В.И. Арнольда. Рассмотрено приложение полученных результатов к динамической модели инвестирования на финансовых рынках.

Ключевые слова: динамические игры, принцип максимума Понтрягина, уравнения Гамильтона-Якоби, равновесные траектории
Цитата: Вестник Удмуртского университета. Математика. Механика. Компьютерные науки, 2017, т. 27, вып. 2, с. 193-209
DOI: 10.20537/vm170204

Asymptotic behavior of solutions in dynamical bimatrix games with discounted indices

The paper is devoted to the analysis of dynamical bimatrix games with integral indices discounted on an infinite time interval. The system dynamics is described by differential equations in which players' behavior changes according to incoming control signals. For this game, a problem of construction of equilibrium trajectories is considered in the framework of minimax approach proposed by N.N. Krasovskii and A.I. Subbotin in the differential games theory. The game solution is based on the structure of dynamical Nash equilibrium developed in papers by A.F. Kleimenov. The maximum principle of L.S. Pontryagin in combination with the method of characteristics for Hamilton-Jacobi equations are applied for the synthesis of optimal control strategies. These methods provide analytical formulas for switching curves of optimal control strategies. The sensitivity analysis for equilibrium solutions is implemented with respect to the discount parameter in the integral payoff functional. It is shown that equilibrium trajectories in the problem with the discounted payoff functional asymptotically converge to the solution of a dynamical bimatrix game with average integral payoff functionals examined in papers by V.I. Arnold. Obtained results are applied to a dynamical model of investments on financial markets.

Keywords: dynamical games, Pontryagin maximum principle, Hamilton-Jacobi equations, equilibrium trajectories
Citation in English: Bulletin of Udmurt University. Mathematics, Mechanics, Computer Science, 2017, vol. 27, issue 2, pp. 193-209

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref