Все выпуски
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
Ультрафильтры и максимальные сцепленные системы множеств
Рассматривается семейство максимальных сцепленных систем, элементами которых являются множества произвольной решетки с «нулем» и «единицей», а также его подсемейство, составленное из ультрафильтров данной решетки. Исследуются соотношения между естественными топологиями, используемыми для оснащения множества максимальных сцепленных систем и множества ультрафильтров упомянутой решетки множеств. Показано, что последнее множество в естественном (для пространств ультрафильтров) оснащении является подпространством пространства максимальных сцепленных систем в оснащении двумя сравнимыми топологиями, одна из которых подобна используемой при построении расширения Волмэна, а вторая соответствует на идейном уровне схеме построения пространства Стоуна в случае, когда решетка является алгеброй множеств. Свойства получающейся битопологической структуры детализированы для случаев, когда решетка является алгеброй множеств, топологией, семейством замкнутых множеств топологического пространства.
Ultrafilters and maximal linked systems
The family of maximal linked systems all elements of which are sets of an arbitrary lattice with “zero” and “unit” is considered; its subfamily composed of ultrafilters of that lattice is also considered. Relations between natural topologies used to equip the set of maximal linked systems and the set of the lattice ultrafilters are investigated. It is demonstrated that the last set under natural (for ultrafilter spaces) equipment is a subspace of the space of maximal linked systems under equipment with two comparable topologies one of which is similar to the topology used for the Wallman extension and the second corresponds (conceptually) to the scheme of Stone space in the case when the initial lattice is an algebra of sets. Properties of the resulting bitopological structure are detailed for the cases when our lattice is an algebra of sets, a topology, and a family of closed sets in a topological space.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.