Все выпуски
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
К нелинейной задаче преследования с дискретным управлением
Рассматривается дифференциальная игра двух лиц, описываемая системой вида $\dot x = f(x, u) + g(x, v)$, $x \in \mathbb R^k$, $u \in U$, $v \in V$. Множеством значений управлений преследователя является конечное подмножество фазового пространства. Множеством значений управлений убегающего является компактное подмножество фазового пространства. Целью преследователя является приведение фазовых координат системы в ноль за конечное время. Цель убегающего - помешать этому. Получены достаточные условия на параметры игры для существования окрестности нуля, из которой происходит поимка, то есть приведение системы в ноль. Также доказано, что независимо от выбора действий убегающего время, необходимое преследователю для перевода системы в ноль, стремится к нулю с приближением начального положения к нулю.
To a nonlinear pursuit problem with discrete control
A two-person differential game is considered. The game is described by the following system of differential equations $\dot x = f(x, u) + g(x, v)$, where $x \in \mathbb R^k$, $u \in U$, $v \in V$. The pursuer's admissible control set is a finite subset of phase space. The evader's admissible control set is a compact subset of phase space. The pursuer's purpose is a translation of phase coordinates to zero. The evader's purpose is to prevent implementation of pursuer's purpose. Sufficient conditions on game parameters for the existence of zero neighborhood from which a capture occurs, that is translation of phase coordinates to zero, have been received. Also, it is proved that a period of time necessary for the pursuer to translate phase coordinates to zero tends to zero with the approaching of the initial position to zero. It happens regardless of the evader's control.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.