Текущий выпуск Выпуск 4, 2017 Том 27

Приближение обыкновенных дробно-дифференциальных уравнений дифференциальными уравнениями с малым параметром

 pdf (338K)

В работе предложен подход к аппроксимации обыкновенных дифференциальных уравнений с производными дробного порядка (так называемых дробно-дифференциальных уравнений) дифференциальными уравнениями с производными целого порядка в предположении, что порядок дробного дифференцирования близок к целому числу. Для дробных производных Римана-Лиувилля и Капуто получены разложения по малому параметру, выделяемому из порядка дробного дифференцирования. При этом первый порядок разложения представляется через бесконечный ряд и зависит от производных всех целых порядков. Полученные разложения позволяют приблизить обыкновенные дифференциальные уравнения с производными дробных порядков этого типа обыкновенными дифференциальными уравнениями с малым параметром. Доказано, что для дробно-дифференциальных уравнений, принадлежащих определенному классу, соответствующие приближенные уравнения будут содержать только производные конечного целого порядка. Приближенные решения таких уравнений могут быть найдены с использованием известных методов возмущений. Предлагаемый подход иллюстрируется рядом примеров.

Ключевые слова: обыкновенное дробно-дифференциальное уравнение, малый параметр, аппроксимация, приближенное решение
Цитата: Вестник Удмуртского университета. Математика. Механика. Компьютерные науки, 2017, т. 27, вып. 4, с. 515-531
DOI: 10.20537/vm170403

Approximation of ordinary fractional differential equations by differential equations with a small parameter

An approach to approximation of ordinary fractional differential equations by integer-order differential equations is proposed. It is assumed that the order of fractional differentiation is close to integer. Perturbation expansions for the Riemann-Liouville and Caputo fractional derivatives are derived in terms of a suitable small parameter extracted from the order of fractional differentiation. The first-order term of these expansions is represented by series depending on integer-order derivatives of all integer orders. The expansions obtained permit one to approximate ordinary fractional differential equations, involving such types of fractional derivatives, by integer-order differential equations with a small parameter. It is proved that, for fractional differential equations belonging to a certain class, corresponding approximate equations contain only a finite number of integer-order derivatives. Approximate solutions to such equations can be obtained using well-known perturbation techniques. The proposed approach is illustrated by several examples.

Keywords: ordinary fractional differential equation, small parameter, approximation, approximate solution
Citation in English: Bulletin of Udmurt University. Mathematics, Mechanics, Computer Science, 2017, vol. 27, issue 4, pp. 515-531

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref