Все выпуски
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
Оптимизация средней временной выгоды для вероятностной модели популяции, подверженной промыслу
Рассматривается модель популяции, подверженной промыслу, в которой размеры промысловых заготовок являются случайными величинами. При отсутствии эксплуатации развитие популяции описывается логистическим уравнением $\dot x =(a-bx)x,$ где коэффициенты $a$ и $b$ являются показателями роста популяции и внутривидовой конкуренции соответственно, а в моменты времени $\tau_k=kd$ из популяции извлекается некоторая случайная доля ресурса $\omega_k,$ $k=1,2,\ldots.$ Предполагаем, что имеется возможность влиять на процесс сбора ресурса таким образом, чтобы остановить заготовку в том случае, когда ее доля окажется достаточно большой (больше некоторого значения $u_k\in (0,1)$ в момент $\tau_k$), чтобы сохранить возможно больший остаток ресурса для увеличения размера следующего сбора. Исследуется задача оптимального способа эксплуатации популяции $\bar u=(u_1,\dots,u_k,\dots),$ при котором добываемый ресурс постоянно восстанавливается и значение средней временной выгоды можно оценить снизу по возможности наибольшим числом. Показано, что при недостаточном ограничении доли добываемого ресурса значение средней временной выгоды может равняться нулю для всех или для почти всех значений случайных параметров. Рассматривается также следующая задача: пусть задано значение $u\in(0,1),$ которым мы ограничиваем случайную долю ресурса $\omega_k,$ добываемого из популяции в моменты времени $\tau_k$, $k=1,2,\ldots.$ Требуется найти минимальное время между соседними изъятиями, необходимое для восстановление ресурса, чтобы можно было производить добычу до тех пор, пока доля извлеченного ресурса не достигнет значения $u$.
Optimization of average time profit for a probability model of the population subject to a craft
We consider the model of population subject to a craft, in which sizes of the trade preparations are random variables. In the absence of operation the population development is described by the logistic equation $\dot x = (a-bx) x,$ where coefficients $a $ and $b $ are indicators of growth of population and intraspecific competition respectively, and in time moments $ \tau_k=kd$ some random share of a resource $\omega_k,$ $k=1,2, \ldots,$ is taken from population. We assume that there is a possibility to exert influence on the process of resource gathering so that to stop preparation in the case when its share becomes big enough (more than some value $u_k\in (0,1)$ in the moment $\tau_k$) in order to keep the biggest possible rest of a resource and to increase the size of next gathering. We investigate the problem of an optimum way to control population $ \bar u = (u_1, \dots, u_k, \dots)$ at which the extracted resource is constantly renewed and the value of average time profit can be lower estimated by the greatest number whenever possible. It is shown that at insufficient restriction of a share of the extracted resource the value of average time profit can be equaled to zero for all or almost all values of random parameters. We also consider the following problem: let a value $u\in (0,1)$ be given, by which we limit a random share of a resource $ \omega_k, $ extracted from population in time moments $\tau_k,$ $k=1,2, \ldots .$ It is required to find minimum time between neighboring withdrawals, necessary for resource renewal, in order to make it possible to do extractions until the share of the taken resource does not reach the value $u$.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.