Асимптотика решения краевой задачи, когда предельное уравнение имеет нерегулярную особую точку

 pdf (160K)

В статье исследуются асимптотические поведения решений сингулярно возмущенных двухточечных краевых задач на отрезке. Объектом исследования является линейное неоднородное обыкновенное дифференциальное уравнение второго порядка с малым параметром при старшей производной искомой функций. Особенности рассматриваемых задач состоят в том, что малый параметр находится при старшей производной искомой функций и соответствующее невозмущенное дифференциальное уравнение первого порядка имеет иррегулярную особую точку на левом конце отрезка. На концах отрезка ставятся краевые условия. Рассматриваются две задачи, в одном функция перед первой производной искомой функций не положительна на рассматриваемом отрезке, а во втором не отрицательна. Асимптотические разложения задач строятся классическим методом пограничных функций Вишика-Люстерника-Васильевой-Иманалиева. Однако напрямую этот метод применить невозможно, так как внешнее решение имеет особенность. Мы сначала убираем эту особенность из внешнего решения, затем применяем метод пограничных функций. Построенные асимптотические разложения обоснованы с помощью принципа максимума, т.е. получены оценки для остаточных функций.

Ключевые слова: нерегулярная особая точка, сингулярное возмущение, асимптотика, метод погранфункций, задача Дирихле, пограничная функция, малый параметр
Цитата: Вестник Удмуртского университета. Математика. Механика. Компьютерные науки, 2019, т. 29, вып. 3, с. 332-340
DOI: 10.20537/vm190304

Asymptotics of the solution to the boundary-value problem when the limit equation has an irregular singular point

This article studies the asymptotic behavior of the solutions of singularly perturbed two-point boundary value-problems on an interval. The object of the study is a linear inhomogeneous ordinary differential second-order equation with a small parameter with the highest derivative of the unknown function. The special feature of the problem is that the small parameter is found at the highest derivative of the unknown function and the corresponding unperturbed first-order differential equation has an irregular singular point at the left end of the segment. At the ends of the segment, boundary conditions are imposed. Two problems are considered: in one of them the function in front of the first derivative of the unknown function is nonpositive on the segment considered, and in the second it is nonnegative. Asymptotic expansions of the problems are constructed by the classical method of Vishik-Lyusternik-Vasilyeva-Imanaliev boundary functions. However, this method cannot be applied directly, since the external solution has a singularity. We first remove this singularity from the external solution, and then apply the method of boundary functions. The constructed asymptotic expansions are substantiated using the maximum principle, i.e., estimates for the residual functions are obtained.

Keywords: irregular singular point, singular perturbation, asymptotic behavior, methods of boundary layer functions, Dirichlet problem, boundary function, small parameter
Citation in English: Bulletin of Udmurt University. Mathematics, Mechanics, Computer Science, 2019, vol. 29, issue 3, pp. 332-340

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref