Все выпуски
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
Исследование собственных значений и рассеяния для гамильтониана Боголюбова – де Жена вблизи границы сверхпроводящей щели
Рассматривается гамильтониан Боголюбова – де Жена, возмущенный малым потенциалом, описывающий квазичастицы вида «электрон плюс дырка», в частности андреевские локализованные состояния (АЛС) в одномерной сверхпроводящей структуре при наличии примеси. Интерес к упомянутым квазичастицам резко возрос в последние 15-20 лет благодаря открытию в топологических сверхпроводниках майорановских локализованных состояний (МЛС). МЛС представляют собой устойчивые к внешним воздействиям нейтральные квазичастицы с нулевой энергией, весьма перспективные для будущего использования в квантовых вычислениях. Исследование возникновения и поведения, в зависимости от параметров системы и топологической фазы, АЛС, описываемых собственными функциями гамильтониана Боголюбова – де Жена, интересно как с математической точки зрения, в сравнении с обычным оператором Шрёдингера, так и с физической, поскольку может прояснить предпосылки возникновения МЛС в топологически нетривиальной фазе и майораноподобных состояний (часто играющих роль МЛС) в топологически тривиальной фазе. Изучение рассеяния интересно тем, что вероятность прохождения квазичастицы через потенциальный барьер пропорциональна кондактансу, который можно измерить в эксперименте, что в принципе дает возможность связать величину кондактанса с наличием АЛС. В статье найдены условия возникновения собственных значений (энергий квазичастиц) в сверхпроводящей щели, имеющейся в непрерывном спектре гамильтониана, а также их зависимость от параметров как в топологически нетривиальной, так и в топологически тривиальной фазах. Кроме того, исследована задача рассеяния для энергий вблизи границы щели; в частности, найдена вероятность прохождения квазичастицы через потенциальный барьер как функция от параметров системы.
Investigation of eigenvalues and scattering problem for the Bogoliubov – de Gennes Hamiltonian near the superconducting gap edge
We consider the Bogolyubov – de Gennes Hamiltonian perturbed by a small potential, which describes quasiparticles of electron-hole type, in particular, Andreev bound states (ABSs) in a one-dimensional superconducting structure in the presence of an impurity. In the last 15-20 years, interest in such quasiparticles has increased sharply due to the discovery of Majorana bound states (MBSs) in topological superconductors. MBSs are neutral zero-energy quasiparticles resistant to external influences, which are very promising for future use in quantum computing. The study of the appearance and behavior, depending on the system parameters and the topological phase, of ABSs described by the eigenfunctions of the Bogolyubov – de Gennes Hamiltonian, is interesting both from a mathematical point of view, in comparison with the usual Schrödinger operator, and from a physical point of view, since it can clarify prerequisites for the occurrence of MBSs in the topologically nontrivial phase and marjoram-like states (often playing the role of MBSs) in the topologically trivial phase. The study of scattering is interesting due to the fact that the probability of a quasiparticle transmission through a potential barrier is proportional to the conductance, that can be measured experimentally, which in principle makes it possible to relate the conductance to the presence of ABS. In the paper, the conditions for the appearance of eigenvalues (energies of quasiparticles) in the superconducting gap in the continuous spectrum of the Hamiltonian, as well as their dependence on the parameters in both the topological nontrivial and topologically trivial phases, are found. In addition, the scattering problem for energies near the edge of the gap has been investigated, in particular, the probability of a quasiparticle transmission through a potential barrier as a function of system parameters has been found.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.